1995
Immunobiology of Mouse Dendritic Epidermal T Cells: A Decade Later, Some Answers, But Still More Questions
Tigelaar R, Lewis J. Immunobiology of Mouse Dendritic Epidermal T Cells: A Decade Later, Some Answers, But Still More Questions. Journal Of Investigative Dermatology 1995, 105: s43-s49. DOI: 10.1038/jid.1995.9.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDendritic epidermal T cellsEpidermal T cellsT cell receptorΓδ cellsT cellsMouse dendritic epidermal T-cellsMurine dendritic epidermal T cellsCutaneous immune surveillanceNormal human skinSelf antigensImmune surveillanceNormal miceActive hair growthAdult miceEpithelial sitesCutaneous physiologyReproductive tractTissue restrictionHair growthFunctional activityMiceSkinHuman skinReceptorsOverwhelming evidence
1990
UVB Radiation and DNFB Skin Painting Induce Suppressor Cells Universally in Mice
Glass M, Bergstresser P, Tigelaar R, Streilein J. UVB Radiation and DNFB Skin Painting Induce Suppressor Cells Universally in Mice. Journal Of Investigative Dermatology 1990, 94: 273-278. PMID: 1689757, DOI: 10.1111/1523-1747.ep12874117.Peer-Reviewed Original ResearchConceptsSuppressor T cellsStrains of miceContact hypersensitivityLangerhans cellsT cellsSuppressor cellsHapten-specific suppressor T cellsInduction of CHSUVB-susceptible strainsT suppressor cellsTreatment of miceAntigen-presenting cellsEpidermal Langerhans cellsEffects of UVBEffector mechanismsMurine skinMiceUVBUVB radiationSkinInductionDinitrofluorobenzeneCellsUVRApparent effect
1988
Local effects of UV radiation on immunization with contact sensitizers. I. Down-regulation of contact hypersensitivity by application of TNCB to UV-irradiated skin.
Cruz P, Nixon-Fulton J, Tigelaar R, Bergstresser P. Local effects of UV radiation on immunization with contact sensitizers. I. Down-regulation of contact hypersensitivity by application of TNCB to UV-irradiated skin. Photodermatology Photoimmunology & Photomedicine 1988, 5: 126-32. PMID: 3174491.Peer-Reviewed Original ResearchConceptsContact hypersensitivityNon-irradiated skinNormal skinApplication of trinitrochlorobenzeneEar-swelling responseUVB-treated miceUV-irradiated skinDaily dosesSuccessful immunizationContact sensitizersC3H miceSite of irradiationFinal exposureTrinitrochlorobenzeneLow dosesAbdominal skinImmunogenic propertiesMiceHypersensitivityImmunizationMouse skinSensitization reactionsDosesSuccessive daysSkin
1985
Lymphocyte Traffic and the Skin
Tigelaar R. Lymphocyte Traffic and the Skin. Dermatologic Clinics 1985, 3: 569-585. PMID: 3916171, DOI: 10.1016/s0733-8635(18)30857-x.Peer-Reviewed Original ResearchConceptsPeripheral lymph nodesLymph nodesLymphocyte migrationEndothelial cellsLymphoid organsImmunologic influenceMesenteric lymph nodesMovement of lymphocytesLymphocyte membrane receptorsDifferent organ sitesSpecialized endothelial cellsNonlymphoid organsLymphocyte trafficImmunologic defenseT cellsGastrointestinal tractOrgan sitesBlast transformationMajor subsetSkinLymphocytesCommon determinantsOrgansMembrane receptorsCells
1983
Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation.
Elmets C, Bergstresser P, Tigelaar R, Wood P, Streilein J. Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. Journal Of Experimental Medicine 1983, 158: 781-794. PMID: 6193234, PMCID: PMC2187099, DOI: 10.1084/jem.158.3.781.Peer-Reviewed Original ResearchConceptsTolerogenic signalsLow-dose ultraviolet B (UVB) radiationLow-dose ultraviolet radiationAntigen-presenting potentialAntigen-specific unresponsivenessResident Langerhans cellsMechanism of unresponsivenessSuppressor cellsContact hypersensitivityLyt-1Effector stageLangerhans cellsSystemic administrationT cellsLocal applicationUltraviolet B radiationInduction phaseB radiationUnresponsivenessSkinUltraviolet radiationCellsTolerogenDNFBHypersensitivity