Featured Publications
Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption
Bond CW, Trinko R, Foscue E, Furman K, Groman SM, Taylor JR, DiLeone RJ. Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption. Journal Of Neuroscience 2020, 40: 4727-4738. PMID: 32354856, PMCID: PMC7294796, DOI: 10.1523/jneurosci.3054-18.2020.Peer-Reviewed Original ResearchConceptsControl food intakeNAc projectionsFood intakeAccumbens projectionsLateral hypothalamusMesolimbic circuitsFood consumptionNucleus accumbens projectionsFood-seeking behaviorNAC controlVTA pathwayInhibitory projectionsMale miceNAc shellOptogenetic activationFiber photometryOptogenetic inhibitionPermissive rolePharmacological studiesDrug rewardVTAConsummatory behaviorIntakeAdaptive inhibitionNeural activityMedial prefrontal D1 dopamine neurons control food intake
Land BB, Narayanan NS, Liu RJ, Gianessi CA, Brayton CE, M Grimaldi D, Sarhan M, Guarnieri DJ, Deisseroth K, Aghajanian GK, DiLeone RJ. Medial prefrontal D1 dopamine neurons control food intake. Nature Neuroscience 2014, 17: 248-253. PMID: 24441680, PMCID: PMC3968853, DOI: 10.1038/nn.3625.Peer-Reviewed Original ResearchMeSH KeywordsAmygdalaAnalysis of VarianceAnimalsBiophysicsCalcium-Calmodulin-Dependent Protein Kinase Type 2ChannelrhodopsinsEatingElectric StimulationFemaleFood DeprivationFunctional LateralityGene Expression RegulationIn Vitro TechniquesLuminescent ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, TransgenicNeural InhibitionNeural PathwaysNeuronsOptogeneticsPatch-Clamp TechniquesPhotic StimulationPrefrontal CortexReceptors, Dopamine D1Time Factors
2023
Ketogenic diet enhances the effects of oxycodone in mice
Trinko R, Diaz D, Foscue E, Thompson S, Taylor J, DiLeone R. Ketogenic diet enhances the effects of oxycodone in mice. Scientific Reports 2023, 13: 7507. PMID: 37160959, PMCID: PMC10170077, DOI: 10.1038/s41598-023-33458-8.Peer-Reviewed Original ResearchConceptsOpioid use disorderKetogenic dietKD miceUse disordersTreatment of OUDEffects of KDEffects of oxycodoneClinical pain managementAlcohol use disorderProgressive ratio scheduleSex-specific effectsChronic oxycodoneLess oxycodoneOpioid withdrawalAntinociceptive effectPain managementPrescription opioidsSide effectsOxycodoneLocomotor activityTherapeutic potentialOpioidsDietary effectsOpiate sensitivityMice
2018
Striatal dopamine regulates systemic glucose metabolism in humans and mice
Ter Horst KW, Lammers NM, Trinko R, Opland DM, Figee M, Ackermans MT, Booij J, van den Munckhof P, Schuurman PR, Fliers E, Denys D, DiLeone RJ, la Fleur SE, Serlie MJ. Striatal dopamine regulates systemic glucose metabolism in humans and mice. Science Translational Medicine 2018, 10 PMID: 29794060, DOI: 10.1126/scitranslmed.aar3752.Peer-Reviewed Original ResearchConceptsSystemic glucose metabolismDeep brain stimulationPeripheral insulin sensitivityGlucose metabolismInsulin sensitivityStriatal dopamineBilateral deep brain stimulationStriatal neuronal activityPeripheral glucose metabolismReceptor-expressing neuronsStriatal dopamine signalingObservational human studiesNondiabetic patientsInsulin requirementsDopamine depletionGlucose toleranceObsessive-compulsive disorderDiabetes patientsInternal capsuleStriatal areasDopamine releaseHealthy subjectsAnterior limbNucleus accumbensNeuronal activity
2015
Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome
Xu M, Kobets A, Du JC, Lennington J, Li L, Banasr M, Duman RS, Vaccarino FM, DiLeone RJ, Pittenger C. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 893-898. PMID: 25561540, PMCID: PMC4311862, DOI: 10.1073/pnas.1419533112.Peer-Reviewed Original ResearchConceptsTourette syndromeCholinergic interneuronsDorsolateral striatumSensorimotor gatingD-amphetamine challengeLarge cholinergic interneuronsSpecific cell ablationInterneuron deficitsStriatal interneuronsAcute administrationGABAergic markersDopaminergic drugsAvailable treatmentsPostmortem studiesPrepulse inhibitionTic disordersSevere diseaseHuman putamenMotor coordinationInterneuronsTargeted ablationSevere endStriatumAcute stressGilles de
2012
Prefrontal D1 dopamine signaling is required for temporal control
Narayanan NS, Land BB, Solder JE, Deisseroth K, DiLeone RJ. Prefrontal D1 dopamine signaling is required for temporal control. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 20726-20731. PMID: 23185016, PMCID: PMC3528521, DOI: 10.1073/pnas.1211258109.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBehavior, AnimalBiological ClocksMaleMiceMice, TransgenicModels, NeurologicalNeural PathwaysOptogeneticsPrefrontal CortexRatsReceptors, Dopamine D1RewardRNA InterferenceRNA, Small InterferingSignal TransductionSynaptic TransmissionTime FactorsTyrosine 3-MonooxygenaseVentral Tegmental AreaConceptsVentral tegmental areaD1 dopamine receptorsDopamine receptorsTegmental areaDopaminergic projectionsPrefrontal neuronsMidbrain ventral tegmental areaD2 dopamine receptorsDopaminergic inputD1 receptorsDopaminergic neurotransmissionD1 dopamineDopaminergic diseasesTyrosine hydroxylaseDopamine signalingReceptorsPharmacological disruptionSelective inhibitionGoal-directed behaviorNeuronsRNA interferenceTiming taskBehavioral goalsControlNeurotransmissionGene Profiling Reveals a Role for Stress Hormones in the Molecular and Behavioral Response to Food Restriction
Guarnieri DJ, Brayton CE, Richards SM, Maldonado-Aviles J, Trinko JR, Nelson J, Taylor JR, Gourley SL, DiLeone RJ. Gene Profiling Reveals a Role for Stress Hormones in the Molecular and Behavioral Response to Food Restriction. Biological Psychiatry 2012, 71: 358-365. PMID: 21855858, PMCID: PMC3237832, DOI: 10.1016/j.biopsych.2011.06.028.Peer-Reviewed Original ResearchConceptsFood restrictionGene expressionExpression changesStress-responsive genesBrain regionsWhole-genome microarraysPersistent expression changesGene expression profilesMale C57BL/6J miceAdministration of corticosteroneVentral tegmental areaIntact adrenal glandsEnzyme-linked immunosorbentMedial prefrontal cortexQuantitative polymerase chain reactionResponsive genesNonrestricted animalsDaily injectionsAdrenal glandC57BL/6J miceExpression profilesPlasma levelsPolymerase chain reactionCORT treatmentTegmental area