2022
AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target
Caplan MJ. AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target. Frontiers In Medicine 2022, 9: 753418. PMID: 35174190, PMCID: PMC8841847, DOI: 10.3389/fmed.2022.753418.Peer-Reviewed Original ResearchCellular signaling pathwaysPolycystic kidney diseasePolycystic kidney disease mutationCellular energy useProtein kinaseMaster regulatorCellular metabolismSignaling pathwaysDisease mutationsGenetic diseasesTissue architectureEnzyme activityDramatic perturbationsAutosomal dominant polycystic kidney diseasePathwayDominant polycystic kidney diseaseNew therapeuticsMutationsRenal tissue architectureDrug developmentCellsKinaseAMPKGeneration pathwaysGenes
2018
Implications of AMPK in the Formation of Epithelial Tight Junctions
Rowart P, Wu J, Caplan MJ, Jouret F. Implications of AMPK in the Formation of Epithelial Tight Junctions. International Journal Of Molecular Sciences 2018, 19: 2040. PMID: 30011834, PMCID: PMC6073107, DOI: 10.3390/ijms19072040.Peer-Reviewed Original ResearchConceptsTJ assemblyPlasma membraneAMPK activationUbiquitous serine/threonine kinaseSerine/threonine kinaseBaso-lateral domainTight junctionsImplication of AMPKSelective paracellular permeabilityCell polarityThreonine kinaseDisruption of TJsProtein kinaseEnergy sensorTJ regulationΓ subunitMembrane componentsZO-1 distributionAssembly/AMPKEpithelial tight junctionsEssential roleZonula occludensKinaseEpithelial cells
2011
AMP-activated Protein Kinase (AMPK) Activation and Glycogen Synthase Kinase-3β (GSK-3β) Inhibition Induce Ca2+-independent Deposition of Tight Junction Components at the Plasma Membrane* ♦
Zhang L, Jouret F, Rinehart J, Sfakianos J, Mellman I, Lifton RP, Young LH, Caplan MJ. AMP-activated Protein Kinase (AMPK) Activation and Glycogen Synthase Kinase-3β (GSK-3β) Inhibition Induce Ca2+-independent Deposition of Tight Junction Components at the Plasma Membrane* ♦. Journal Of Biological Chemistry 2011, 286: 16879-16890. PMID: 21383016, PMCID: PMC3089531, DOI: 10.1074/jbc.m110.186932.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsCadherinsCalciumCell AdhesionCell MembraneDogsEpitheliumGene Expression Regulation, EnzymologicGlycogen Synthase Kinase 3Glycogen Synthase Kinase 3 betaMembrane ProteinsMicroscopy, FluorescencePhosphoproteinsPhosphorylationRNA InterferenceTight JunctionsZonula Occludens-1 ProteinConceptsProtein kinase activationTight junction componentsJunction componentsPlasma membraneAMPK activationKinase activationGSK-3β inhibitionNectin-afadin systemEpithelial tight junctionsTight junctionsPhosphorylation studiesSynthase kinaseJunctional proteinsAbsence of extracellularDistinct pathwaysCell growthE-cadherinIndependent depositionKinaseActivationInduce Ca2MembraneAfadinExtracellularInhibitionActivating AMP-activated protein kinase (AMPK) slows renal cystogenesis
Takiar V, Nishio S, Seo-Mayer P, King JD, Li H, Zhang L, Karihaloo A, Hallows KR, Somlo S, Caplan MJ. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 2462-2467. PMID: 21262823, PMCID: PMC3038735, DOI: 10.1073/pnas.1011498108.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorRenal cystogenesisProtein kinaseAutosomal dominant polycystic kidney diseaseFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorEpithelial cellsCyst epithelial cellsRenal cyst developmentCyst-lining epithelial cellsAMPK activationConductance regulatorRapamycin (mTOR) pathwayMammalian targetPharmacological activatorsChloride channelsMTOR pathwayCystogenesisCyst developmentKinaseAMPKContext of ADPKDSignificant arrestDominant polycystic kidney diseasePolycystic kidney disease
2009
Dystroglycan and AMP Kinase: Polarity's Protectors when the Power Goes Out
Zhang L, Seo-Mayer P, Caplan MJ. Dystroglycan and AMP Kinase: Polarity's Protectors when the Power Goes Out. Developmental Cell 2009, 16: 1-2. PMID: 19154710, PMCID: PMC2997531, DOI: 10.1016/j.devcel.2008.12.004.Peer-Reviewed Original Research
2008
Epithelial junctions and polarity: complexes and kinases
Caplan MJ, Seo-Mayer P, Zhang L. Epithelial junctions and polarity: complexes and kinases. Current Opinion In Nephrology & Hypertension 2008, 17: 506-512. PMID: 18695392, PMCID: PMC3057677, DOI: 10.1097/mnh.0b013e32830baaae.Peer-Reviewed Original ResearchConceptsEpithelial cell polarityCell polarityEpithelial cell polarizationJunctional complexesIntercellular adhesion junctionsImportant physiological ramificationsCalcium-dependent adhesion proteinCell-cell contactCellular energy metabolismProtein complexesMembrane proteinsAdhesion junctionsPlasmalemmal domainsAdhesion proteinsCell polarizationPhysiological ramificationsEpithelial junctionsKinaseEnergy metabolismCharacteristic polarityEpithelial cellsProteinParacellular permeabilityNovel classComplexes
2007
Transport protein sorting in polarized epithelial cells.
Zhang L, Caplan MJ. Transport protein sorting in polarized epithelial cells. Acta Physiol Sinica 2007, 59: 505-11. PMID: 17700970.Peer-Reviewed Original ResearchConceptsTransport proteinsMembrane transport proteinsPolarized epithelial cellsProtein-protein interactionsCellular energy sensorEpithelial cellsCell surface domainsCell-matrix contactsSurface domainsPlasma membraneEnergy sensorPhysiological functionsDistinct domainsExquisite organizationPolarized domainsJunctional complexesProteinEpithelial tissuesCellsCascadeParacellular pathwayRecent evidenceDomainKinaseDifferent collectionsThe Future of the Pump
Caplan MJ. The Future of the Pump. Journal Of Clinical Gastroenterology 2007, 41: s217-s222. PMID: 17575526, DOI: 10.1097/mcg.0b013e31803233da.Peer-Reviewed Original ResearchConceptsIon transport proteinsLarge macromolecular complexesMacromolecular complexesGastric parietal cellsTransport proteinsSecond messengerMacromolecular interactionsIon translocationRegulatory processesK-ATPaseCritical roleTight controlX-ray crystallographic techniquesParietal cellsCrystallographic techniquesCellsKinasePharmacologic suppressionTraffickingProteinTranslocationMessengerMolecular structureRegulationSecretion
2006
AMP-activated protein kinase regulates the assembly of epithelial tight junctions
Zhang L, Li J, Young LH, Caplan MJ. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 17272-17277. PMID: 17088526, PMCID: PMC1859922, DOI: 10.1073/pnas.0608531103.Peer-Reviewed Original ResearchConceptsTight junction assemblyJunction assemblyProtein kinaseLKB1-dependent phosphorylationCell polarization processCellular energy statusActivation of AMPKTight junctionsEukaryotic cellsTight junction structureAMPKMDCK cellsEpithelial tight junctionsEnergy statusKinaseEpithelial cellsAbsence of Ca2AssemblyTransepithelial electrical resistanceParacellular fluxZonula occludens-1CellsRecent studiesOccludens-1LKB1
2003
Ion Pump‐Interacting Proteins: Promising New Partners
PAGEL P, ZATTI A, KIMURA T, DUFFIELD A, CHAUVET V, RAJENDRAN V, CAPLAN MJ. Ion Pump‐Interacting Proteins: Promising New Partners. Annals Of The New York Academy Of Sciences 2003, 986: 360-368. PMID: 12763851, DOI: 10.1111/j.1749-6632.2003.tb07215.x.Peer-Reviewed Original Research
1999
Regulation of myocardial glucose uptake and transport during ischemia and energetic stress
Young L, Russell R, Yin R, Caplan M, Ren J, Bergeron R, Shulman G, Sinusas A. Regulation of myocardial glucose uptake and transport during ischemia and energetic stress. The American Journal Of Cardiology 1999, 83: 25-30. PMID: 10750583, DOI: 10.1016/s0002-9149(99)00253-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsEnergetic stressEnergy-generating metabolic pathwaysMonophosphate-activated protein kinaseGlucose uptakeGlucose transport proteinProtein kinaseTransporter translocationTransport proteinsMolecular mechanismsMetabolic pathwaysCardiac glucose uptakeGlucose transporterCellular mechanismsGlucose transportFuel gaugeKinaseTranslocationGlucose entryModerate regional ischemiaSubsequent metabolismGlucose utilization increasesImportant roleUptakeGLUT4Stress
1998
Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal Na+-K+-ATPase
Li D, Cheng S, Fisone G, Caplan M, Ohtomo Y, Aperia A. Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal Na+-K+-ATPase. American Journal Of Physiology 1998, 275: f863-f869. PMID: 9843902, DOI: 10.1152/ajprenal.1998.275.6.f863.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDopamine and cAMP-Regulated Phosphoprotein 32Dose-Response Relationship, DrugEnzyme ActivationEnzyme InhibitorsIn Vitro TechniquesKidneyMaleMarine ToxinsNerve Tissue ProteinsOkadaic AcidOxazolesPhorbol 12,13-DibutyratePhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationProtein Kinase CRatsRats, Sprague-DawleySodium-Potassium-Exchanging ATPaseConceptsState of phosphorylationOkadaic acidPP-2ACalyculin AProtein kinasePP-1PP-1 activityATPase alpha subunitProtein kinase C activatorProtein phosphatasePresence of PDBuAlpha subunitATPase phosphorylationPhosphorylationC activatorProtein 1Anti-alpha antibodyATPaseATPase activityKinaseSuch regulationPDBu inhibitionPDBuPhosphataseFK-506