2023
The Concise Guide to PHARMACOLOGY 2023/24: Ion channels
Alexander S, Mathie A, Peters J, Veale E, Striessnig J, Kelly E, Armstrong J, Faccenda E, Harding S, Davies J, Aldrich R, Attali B, Baggetta A, Becirovic E, Biel M, Bill R, Caceres A, Catterall W, Conner A, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein S, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman A, Jabba S, Jarvis M, Jensen A, Jordt S, Kaczmarek L, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch J, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant L, Rash L, Ren D, Salman M, Sieghart W, Sivilotti L, Smart T, Snutch T, Tian J, Trimmer J, Van den Eynde C, Vriens J, Wei A, Winn B, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal Of Pharmacology 2023, 180: s145-s222. PMID: 38123150, PMCID: PMC11339754, DOI: 10.1111/bph.16178.Peer-Reviewed Original ResearchMeSH KeywordsDatabases, FactualDatabases, PharmaceuticalHumansIon ChannelsLigandsPharmacologyReceptors, G-Protein-CoupledConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsG protein-coupled receptorsIon channelsProtein-coupled receptorsNomenclature guidanceClinical pharmacologyMajor pharmacological targetCatalytic receptorsSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsLandscape formatHuman drug targetsPharmacologyConcise guideBiennial publicationRelated targets
2021
THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels
Alexander SP, Mathie A, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Catterall WA, Conner AC, Davies P, Delling M, Virgilio FD, Falzoni S, Fenske S, George C, Goldstein SAN, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Jarvis M, Jensen AA, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Lynch JW, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yue L, Zhang X, Zhu M. THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal Of Pharmacology 2021, 178: s157-s245. PMID: 34529831, DOI: 10.1111/bph.15539.Peer-Reviewed Original ResearchMeSH KeywordsDatabases, PharmaceuticalHumansIon ChannelsKnowledge BasesLigandsPharmacologyReceptors, G-Protein-CoupledConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsG protein-coupled receptorsHuman drug targetsIon channelsProtein-coupled receptorsNomenclature guidanceClinical pharmacologyMajor pharmacological targetCatalytic receptorsSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsLandscape formatConcise guidePharmacologyBiennial publicationRelated targets
2019
THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels
Alexander S, Mathie A, Peters J, Veale E, Striessnig J, Kelly E, Armstrong J, Faccenda E, Harding S, Pawson A, Sharman J, Southan C, Davies J, Collaborators C, Aldrich R, Becirovic E, Biel M, Catterall W, Conner A, Davies P, Delling M, Di Virgilio F, Falzoni S, George C, Goldstein S, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Jarvis M, Jensen A, Kaczmarek L, Kellenberger S, Kennedy C, King B, Lynch J, Perez-Reyes E, Plant L, Rash L, Ren D, Sivilotti L, Smart T, Snutch T, Tian J, Van den Eynde C, Vriens J, Wei A, Winn B, Wulff H, Xu H, Yue L, Zhang X, Zhu M. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal Of Pharmacology 2019, 176: s142-s228. PMID: 31710715, PMCID: PMC6844578, DOI: 10.1111/bph.14749.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsClinical Pharmacology CommitteeG protein-coupled receptorsHuman drug targetsIon channelsProtein-coupled receptorsPharmacology CommitteeNomenclature guidanceMajor pharmacological targetCatalytic receptorsReceptor NomenclatureSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsDrug classificationLandscape formatConcise guide
2014
More Than a Pore: Ion Channel Signaling Complexes
Lee A, Fakler B, Kaczmarek LK, Isom LL. More Than a Pore: Ion Channel Signaling Complexes. Journal Of Neuroscience 2014, 34: 15159-15169. PMID: 25392484, PMCID: PMC4228125, DOI: 10.1523/jneurosci.3275-14.2014.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionHumansIon Channel GatingIon ChannelsNeuronsProtein SubunitsProteomicsSignal TransductionConceptsIon channelsHeterologous expression systemIon channel complexSignaling ComplexFunctional dissectionHuman genomeMolecular basisExpression systemSecond messengerHuman diseasesChannel complexCellular excitabilityProteinNew insightsSuch interactionsInteractomeGenomeUnexpected propertiesComplexesMessengerPathwayInteractionDysregulationLocalizationVivo
2006
Non-conducting functions of voltage-gated ion channels
Kaczmarek LK. Non-conducting functions of voltage-gated ion channels. Nature Reviews Neuroscience 2006, 7: 761-771. PMID: 16988652, DOI: 10.1038/nrn1988.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinaseΒ-subunitProtein kinaseIntrinsic protein kinase activityTRP familyΑ-subunitNon-conducting functionCell-cell adhesionTranscription factor activityDependent protein kinase IIProtein kinase activityLarge extracellular domainCell proliferationSynaptic release machineryTranscription factor CREBProtein kinase IIVoltage-gated ion channelsKey PointsIn additionMAPK/ERKIntrinsic enzyme activityNon-selective cation channelsCell adhesion moleculeReductase functionC-terminusKinase activity
2005
Association/Dissociation of a Channel–Kinase Complex Underlies State-Dependent Modulation
Magoski NS, Kaczmarek LK. Association/Dissociation of a Channel–Kinase Complex Underlies State-Dependent Modulation. Journal Of Neuroscience 2005, 25: 8037-8047. PMID: 16135761, PMCID: PMC2873328, DOI: 10.1523/jneurosci.1903-05.2005.Peer-Reviewed Original ResearchConceptsProtein kinase CSrc homology 3 domainCation channelsSrc tyrosine kinasePKC-dependent modulationPhorbol esterSrc-dependent regulationAplysia bag cell neuronsBag cell neuronsProtein kinaseAssociated kinaseAssociation/dissociationEgg-laying hormonePhosphotyrosine stainingTyrosine kinaseKinase CKinaseReproductive behaviorNonselective cation channelsIon channelsChannel activityUnstimulated neuronsDependent modulationCell neuronsLong-term excitability
2004
Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals
Jonas EA, Hickman JA, Chachar M, Polster BM, Brandt TA, Fannjiang Y, Ivanovska I, Basañez G, Kinnally KW, Zimmerberg J, Hardwick JM, Kaczmarek LK. Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 13590-13595. PMID: 15342906, PMCID: PMC518799, DOI: 10.1073/pnas.0401372101.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBcl-X ProteinDecapodiformesElectric ConductivityEndopeptidasesHypoxiaIon ChannelsLiposomesMitochondriaNADPatch-Clamp TechniquesPorinsPresynaptic TerminalsProtein Processing, Post-TranslationalProto-Oncogene Proteins c-bcl-2Sequence DeletionVoltage-Dependent Anion ChannelsConceptsBcl-xLMitochondrial channelsDeath pathwaysMitochondrial membraneBcl-xL.Proapoptotic Bcl-2 family proteinsVoltage-dependent anion channelBcl-2 family proteinsOuter mitochondrial membraneCell death pathwaysHydrophobic C-terminusBcl-xL proteinAntiapoptotic Bcl-xLNeuronal death pathwaysDeath stimuliBH3 domainFamily proteinsSquid presynaptic terminalsMammalian cellsC-terminusAnion channelMitochondriaChannel activityOpposite effectHealthy neurons
2003
Functional Specialization of Male and Female Vocal Motoneurons
Yamaguchi A, Kaczmarek LK, Kelley DB. Functional Specialization of Male and Female Vocal Motoneurons. Journal Of Neuroscience 2003, 23: 11568-11576. PMID: 14684859, PMCID: PMC6740944, DOI: 10.1523/jneurosci.23-37-11568.2003.Peer-Reviewed Original ResearchModulation of Synaptic Transmission by the BCL-2 Family Protein BCL-xL
Jonas EA, Hoit D, Hickman JA, Brandt TA, Polster BM, Fannjiang Y, McCarthy E, Montanez MK, Hardwick JM, Kaczmarek LK. Modulation of Synaptic Transmission by the BCL-2 Family Protein BCL-xL. Journal Of Neuroscience 2003, 23: 8423-8431. PMID: 12968005, PMCID: PMC6740692, DOI: 10.1523/jneurosci.23-23-08423.2003.Peer-Reviewed Original ResearchConceptsBcl-2 family proteinsProtein Bcl-xLBcl-xLFamily proteinsMitochondrial membranePro-apoptotic cleavage productRecombinant Bcl-xLBcl-xL proteinMitochondrial calcium uptakePresynaptic terminalsInfluences synaptic transmissionCell deathGiant presynaptic terminalSynaptic transmissionChannel activityProteinSquid stellate ganglionMitochondriaCleavage productsSynaptic stabilityAdult brainPostsynaptic responsesCalcium uptakeMembranePatch pipette
2002
Act locally: new ways of regulating voltage-gated ion channels.
McKay SE, Kaczmarek LK. Act locally: new ways of regulating voltage-gated ion channels. Molecular Interventions 2002, 2: 215-8. PMID: 14993392, DOI: 10.1124/mi.2.4.215.Peer-Reviewed Original ResearchProtein Kinase Modulation of a Neuronal Cation Channel Requires Protein–Protein Interactions Mediated by an Src homology 3 Domain
Magoski NS, Wilson GF, Kaczmarek LK. Protein Kinase Modulation of a Neuronal Cation Channel Requires Protein–Protein Interactions Mediated by an Src homology 3 Domain. Journal Of Neuroscience 2002, 22: 1-9. PMID: 11756482, PMCID: PMC6757624, DOI: 10.1523/jneurosci.22-01-00001.2002.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid MotifsAmino Acid SequenceAnimalsAplysiaCationsCells, CulturedIon Channel GatingIon ChannelsMacromolecular SubstancesMembrane PotentialsMolecular Sequence DataMultiprotein ComplexesNeuronsPatch-Clamp TechniquesPeptidesPhosphorylationProtein BindingProtein Kinase CSrc Homology DomainsConceptsProtein-protein interactionsSrc homology 3 domainProtein kinase CSH3 domainSH3 domain-mediated interactionsDomain-mediated interactionsIon channelsSrc SH3 domainProtein kinase modulationMultiprotein complexesPDZ domainAdaptor proteinProtein kinaseKinase modulationIon channel modulationKinase CMotif peptideCation channel activationKinaseChannel open probabilityCation channelsMembrane depolarizationChannel activationChannel modulationProtein
2000
Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain
Monteggia L, Eisch A, Tang M, Kaczmarek L, Nestler E. Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Research 2000, 81: 129-139. PMID: 11000485, DOI: 10.1016/s0169-328x(00)00155-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBrainCloning, MolecularCyclic Nucleotide-Gated Cation ChannelsHumansHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsIn Situ HybridizationIon ChannelsMaleMembrane PotentialsModels, MolecularMolecular Sequence DataMultigene FamilyMuscle ProteinsNerve Tissue ProteinsOrgan SpecificityPotassium ChannelsProtein Structure, SecondaryRatsRats, Sprague-DawleyRNA, MessengerSequence AlignmentSequence Homology, Amino AcidTranscription, GeneticConceptsRat brainLower brain stem nucleiNeuronal pacemaker activityPrincipal relay nucleiBrain stem nucleiVentral cochlear nucleusAdult rat brainFacial motor nucleusCerebral cortexMotor nucleusStem nucleiTrapezoid bodyCochlear nucleusMamillary bodiesMedial habenulaRelay nucleiHCN1 expressionHCN1-4Olfactory bulbPontine nucleiAdult brainRhythmic firingPacemaker activitySupraoptic nucleusHCN4 expressionActivation of a Ca2+‐permeable cation channel produces a prolonged attenuation of intracellular Ca2+ release in Aplysia bag cell neurones
Magoski N, Knox R, Kaczmarek L. Activation of a Ca2+‐permeable cation channel produces a prolonged attenuation of intracellular Ca2+ release in Aplysia bag cell neurones. The Journal Of Physiology 2000, 522: 271-283. PMID: 10639103, PMCID: PMC2269759, DOI: 10.1111/j.1469-7793.2000.t01-2-00271.x.Peer-Reviewed Original ResearchConceptsVoltage-gated Ca2Non-selective cation channelsRefractory periodCation channelsElectrical stimulationFree salineAbility of nifedipinePresence of nifedipinePresence of TTXIntact abdominal gangliaProlonged refractory periodOnset of refractorinessAfferent inputBrief synaptic stimulationHigh external potassiumPermeable cation channelIntracellular calciumAbdominal ganglionExtracellular Ca2Synaptic stimulationAfterdischargesNormal responseIntracellular Ca2Intracellular storesRepeated stimulation
1999
Prolonged Activation of Mitochondrial Conductances During Synaptic Transmission
Jonas E, Buchanan J, Kaczmarek L. Prolonged Activation of Mitochondrial Conductances During Synaptic Transmission. Science 1999, 286: 1347-1350. PMID: 10558987, DOI: 10.1126/science.286.5443.1347.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsCalciumCalcium ChannelsDecapodiformesElectric ConductivityElectric StimulationIntracellular MembranesIon ChannelsIon TransportMicroscopy, ElectronMitochondriaPatch-Clamp TechniquesPorinsPresynaptic TerminalsSynaptic TransmissionTime FactorsVoltage-Dependent Anion ChannelsConceptsChannel activityIon channel activityMitochondrial membraneOnly organellesIntracellular organellesIntact cellsIon channelsMitochondriaOrganellesLarge conductanceTens of secondsPresynaptic terminalsIon transportSynaptic transmissionSynaptic stimulationConductanceElectron microscopyPatch-clamp techniqueMembraneActivityCellsActivationSquidStimulation
1998
Modulation of a calcium-sensitive nonspecific cation channel by closely associated protein kinase and phosphatase activities
Wilson G, Magoski N, Kaczmarek L. Modulation of a calcium-sensitive nonspecific cation channel by closely associated protein kinase and phosphatase activities. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 10938-10943. PMID: 9724808, PMCID: PMC27999, DOI: 10.1073/pnas.95.18.10938.Peer-Reviewed Original ResearchConceptsProtein kinaseCation channelsProtein phosphatase 1Protein tyrosine phosphataseNonspecific cation channelProtein kinase C inhibitorPresence of H7Nonhydrolyzable ATP analogKinase C inhibitorRegulatory complexPhosphatase 1Bag cell neuronsTyrosine phosphataseExcised patchesOpen probabilityCytoplasmic sideMolecular switchATP analogC inhibitorPhosphatase activityKinaseChannel closureSpontaneous action potentialsPatch-clamp studiesATPDirect and indirect regulation of a single ion channel
Magoski N, Kaczmarek L. Direct and indirect regulation of a single ion channel. The Journal Of Physiology 1998, 509: 1-1. PMID: 9547374, PMCID: PMC2230943, DOI: 10.1111/j.1469-7793.1998.001bo.x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1997
Giga-Ohm Seals on Intracellular Membranes: A Technique for Studying Intracellular Ion Channels in Intact Cells
Jonas E, Knox R, Kaczmarek L. Giga-Ohm Seals on Intracellular Membranes: A Technique for Studying Intracellular Ion Channels in Intact Cells. Neuron 1997, 19: 7-13. PMID: 9247259, DOI: 10.1016/s0896-6273(00)80343-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneCells, CulturedCHO CellsCricetinaeIon ChannelsPatch-Clamp TechniquesConceptsGiga-ohm sealsIntracellular membranesIntact cellsIntracellular ion channelsMembrane ion channel activityIon channel activityConventional patch clampingOrganelle membranesPlasma membraneInternal organellesInternal membranesInternal organelles membraneCell typesIon channelsChannel activityConfocal imagingInositol trisphosphateLipophilic fluorescent dyeMembranePatch clampingConcentric electrode arrangementPatch-clamp techniqueCellsIntact neuronsOrganelles
1996
Ca2+ influx and activation of a cation current are coupled to intracellular Ca2+ release in peptidergic neurons of Aplysia californica.
Knox RJ, Jonas EA, Kao LS, Smith PJ, Connor JA, Kaczmarek LK. Ca2+ influx and activation of a cation current are coupled to intracellular Ca2+ release in peptidergic neurons of Aplysia californica. The Journal Of Physiology 1996, 494: 627-639. PMID: 8865062, PMCID: PMC1160665, DOI: 10.1113/jphysiol.1996.sp021520.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAplysiaCalciumCationsEndoplasmic ReticulumIon ChannelsMembrane PotentialsNeuronsThapsigarginConceptsBag cell neuronsCell neuronsThapsigargin-sensitive Ca2Cation currentReversal potentialVoltage-activated Ba2Non-selective cation currentAplysia californicaApparent reversal potentialSteady-state Ca2Thapsigargin-induced elevationMin. 3Endoplasmic reticulum Ca2Voltage-clamp experimentsMicroM tetrodotoxinPeptidergic neuronsIntact gangliaAbdominal ganglionExtracellular Ca2Intracellular Ca2Intracellular storesBAPTA-AMSmall depolarizationBasal levelsNeuronsInsulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents
Jonas E, Knox R, Kaczmarek L, Schwartz J, Solomon D. Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents. Journal Of Neuroscience 1996, 16: 1645-1658. PMID: 8774433, PMCID: PMC6578688, DOI: 10.1523/jneurosci.16-05-01645.1996.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino Acid SequenceAnimalsAplysiaBase SequenceCalcium ChannelsCloning, MolecularDNA, ComplementaryElectrophysiologyImmunohistochemistryInsulinIon ChannelsMolecular ProbesMolecular Sequence DataNeuronsPotassium ChannelsProtein-Tyrosine KinasesReceptor, InsulinTissue DistributionConceptsBag cell neuronsInsulin receptorInsulin-like peptidesImmunocytochemical staining showCell neuronsTyrosine kinase receptorsVertebrate insulinsMolecular cloningHerbimycin ATyrosine residuesTyrosine kinaseKinase receptorsInsulin-like growth factor-1Factor 1Staining showsVoltage-clamped neuronsVoltage-dependent Ca2Growth factor-1Aplysia californicaAplysia neuronsNervous systemReceptorsAction potentialsNeuronsInsulin
1993
The peptide FMRFa terminates a discharge in Aplysia bag cell neurons by modulating calcium, potassium, and chloride conductances
Fisher T, Lin C, Kaczmarek L. The peptide FMRFa terminates a discharge in Aplysia bag cell neurons by modulating calcium, potassium, and chloride conductances. Journal Of Neurophysiology 1993, 69: 2164-2173. PMID: 7688803, DOI: 10.1152/jn.1993.69.6.2164.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAplysiaCalcium ChannelsCells, CulturedChloride ChannelsElectric StimulationElectrophysiologyFMRFamideGangliaImmunohistochemistryIon ChannelsMembrane PotentialsMembrane ProteinsNeuritesNeuronsNeuropeptidesNeurotransmitter AgentsPotassium ChannelsStereotyped BehaviorTetradecanoylphorbol AcetateConceptsBag cell neuronsCell neuronsAction potentialsElectrical stimulationVoltage-activated calcium currentsOnset of afterdischargePowerful inhibitory influenceIntact abdominal gangliaIon substitution experimentsVoltage-clamp experimentsAfferent nervesProtein kinase C. 5Channel blockersCalcium currentPrimary cell culturesAbdominal ganglionInhibitory influenceAfterdischargesCyclic AMP analogueFMRFaOutward currentsNeuronal processesNeuronsAplysia bag cell neuronsReversal potential