2023
The Concise Guide to PHARMACOLOGY 2023/24: Ion channels
Alexander S, Mathie A, Peters J, Veale E, Striessnig J, Kelly E, Armstrong J, Faccenda E, Harding S, Davies J, Aldrich R, Attali B, Baggetta A, Becirovic E, Biel M, Bill R, Caceres A, Catterall W, Conner A, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein S, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman A, Jabba S, Jarvis M, Jensen A, Jordt S, Kaczmarek L, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch J, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant L, Rash L, Ren D, Salman M, Sieghart W, Sivilotti L, Smart T, Snutch T, Tian J, Trimmer J, Van den Eynde C, Vriens J, Wei A, Winn B, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal Of Pharmacology 2023, 180: s145-s222. PMID: 38123150, PMCID: PMC11339754, DOI: 10.1111/bph.16178.Peer-Reviewed Original ResearchConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsG protein-coupled receptorsIon channelsProtein-coupled receptorsNomenclature guidanceClinical pharmacologyMajor pharmacological targetCatalytic receptorsSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsLandscape formatHuman drug targetsPharmacologyConcise guideBiennial publicationRelated targets
2022
The role of altered translation in intellectual disability and epilepsy
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Progress In Neurobiology 2022, 213: 102267. PMID: 35364140, PMCID: PMC10583652, DOI: 10.1016/j.pneurobio.2022.102267.Peer-Reviewed Original ResearchConceptsIntellectual disabilityNeuronal stimulationLocal synaptic activityActivity-dependent changesActivity-dependent translationOverall excitabilitySynaptic activityEpileptic seizuresSynaptic componentsCellular compositionEpilepsyDisabilityIon channelsCell typesDisordersHigher proportionStimulationSeizuresStimuliWorld populationPopulationExcitabilityOriginal stimulusDiseaseMutations
2021
THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels
Alexander SP, Mathie A, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Catterall WA, Conner AC, Davies P, Delling M, Virgilio FD, Falzoni S, Fenske S, George C, Goldstein SAN, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Jarvis M, Jensen AA, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Lynch JW, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yue L, Zhang X, Zhu M. THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal Of Pharmacology 2021, 178: s157-s245. PMID: 34529831, DOI: 10.1111/bph.15539.Peer-Reviewed Original ResearchConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsG protein-coupled receptorsHuman drug targetsIon channelsProtein-coupled receptorsNomenclature guidanceClinical pharmacologyMajor pharmacological targetCatalytic receptorsSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsLandscape formatConcise guidePharmacologyBiennial publicationRelated targetsA KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation
Zhang Y, Ali SR, Nabbout R, Barcia G, Kaczmarek LK. A KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation. Journal Of Neurophysiology 2021, 126: 532-539. PMID: 34232791, PMCID: PMC8409950, DOI: 10.1152/jn.00257.2021.Peer-Reviewed Original ResearchConceptsFunctional channelsProtein kinase C.Serious human diseasesPotassium channelsWild-type channelsEpilepsy of infancyChannel modulationTerminal domainIon channel mutationsPKC phosphorylationC-terminusNormal neuronal functionChannel proteinsKv3.1 potassium channelRegulatory sitesKinase C.Human diseasesChannel functionPhosphorylationIon channelsMutationsNovo variantsChannel mutationsBiophysical propertiesNeuronal functionCerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1
Zhang Y, Varela L, Szigeti-Buck K, Williams A, Stoiljkovic M, Šestan-Peša M, Henao-Mejia J, D’Acunzo P, Levy E, Flavell RA, Horvath TL, Kaczmarek LK. Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1. Nature Communications 2021, 12: 1731. PMID: 33741962, PMCID: PMC7979925, DOI: 10.1038/s41467-021-22003-8.Peer-Reviewed Original ResearchConceptsTank Binding Kinase 1HAX-1Kv3.3 potassium channelMultivesicular bodiesKinase 1TANK-binding kinase 1Activation of caspasesAnti-apoptotic proteinsPotassium channelsMembrane proteinsBiochemical pathwaysCerebellar neuronsChannels bindCell deathTBK1 activityIon channelsMutant channelsCellular constituentsTraffickingKv3.3 channelsProteinNeuronal survivalMutationsChannel inactivationCaspases
2020
Excitable Membrane Properties of Neurons
Kaczmarek L. Excitable Membrane Properties of Neurons. 2020, 3-32. DOI: 10.1093/oxfordhb/9780190669164.013.20.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2019
THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels
Alexander S, Mathie A, Peters J, Veale E, Striessnig J, Kelly E, Armstrong J, Faccenda E, Harding S, Pawson A, Sharman J, Southan C, Davies J, Collaborators C, Aldrich R, Becirovic E, Biel M, Catterall W, Conner A, Davies P, Delling M, Di Virgilio F, Falzoni S, George C, Goldstein S, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Jarvis M, Jensen A, Kaczmarek L, Kellenberger S, Kennedy C, King B, Lynch J, Perez-Reyes E, Plant L, Rash L, Ren D, Sivilotti L, Smart T, Snutch T, Tian J, Van den Eynde C, Vriens J, Wei A, Winn B, Wulff H, Xu H, Yue L, Zhang X, Zhu M. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal Of Pharmacology 2019, 176: s142-s228. PMID: 31710715, PMCID: PMC6844578, DOI: 10.1111/bph.14749.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsBest available pharmacological toolsOpen access knowledgebase sourceOfficial IUPHAR classificationAvailable pharmacological toolsDrug targetsClinical Pharmacology CommitteeG protein-coupled receptorsHuman drug targetsIon channelsProtein-coupled receptorsPharmacology CommitteeNomenclature guidanceMajor pharmacological targetCatalytic receptorsReceptor NomenclatureSelective pharmacologyNuclear hormone receptorsPharmacological targetsPharmacological toolsHormone receptorsPrevious GuidesReceptorsDrug classificationLandscape formatConcise guide
2018
Extraction of Auditory Information by Modulation of Neuronal Ion Channels
Kaczmarek L. Extraction of Auditory Information by Modulation of Neuronal Ion Channels. 2018, 273-300. DOI: 10.1093/oxfordhb/9780190849061.013.23.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsTrapezoid bodyMedial nucleusNeuronal firing patternsGroups of neuronsPotassium channel subunitsAuditory neuronsFiring patternsChannel subunitsAuditory informationIon channelsAuditory inputNeuronal ion channelsSuch modulationComplex soundsSpecific patternsNeuronsIncoming stimuliAuditory environmentIdentical neuronsSame patternVariety of responsesSmall numberModulationReviewGroup
2017
Chapter 16 Ion Channel Dysfunction and FXS
Frick A, Ginger M, El-Hassar L, Kaczmarek L. Chapter 16 Ion Channel Dysfunction and FXS. 2017, 323-340. DOI: 10.1016/b978-0-12-804461-2.00016-0.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2015
Membrane Ion Channels and Ion Currents
Levitan I, Kaczmarek L. Membrane Ion Channels and Ion Currents. 2015, 63-84. DOI: 10.1093/med/9780199773893.003.0004.ChaptersSingle ion channelsIon currentMovement of ionsIon channelsParticular ionPlasma membraneSpecialized membrane proteinsMembrane ion channelsIonsAction potential firingNeuronal plasma membranePatch-clamp techniqueMembrane proteinsNeurons resultsCurrentClamp techniqueAction potentialsDetailed characterizationElectrical activityMembrane currentsMembrane voltageChannelsMacroscopic membrane currentsEssential propertiesComplex patternsIon Channels Are Membrane Proteins
Levitan I, Kaczmarek L. Ion Channels Are Membrane Proteins. 2015, 85-102. DOI: 10.1093/med/9780199773893.003.0005.ChaptersMembrane-spanning segmentsHomologous domainsPrimary subunitIon channelsFunctional potassium channelsPotassium channelsVoltage-dependent ion channelsThree-dimensional structureMembrane proteinsSodium channelsMutational analysisProtein regionsVoltage-gated sodiumChannel proteinsChannel gatingProtein conformationStructural modulesChannel poreGlobal changeVoltage-dependent activationVoltage-dependent channelsSubunitsProteinOverall structureIon selectivityReceptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels
Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels. 2015, 239-262. DOI: 10.1093/med/9780199773893.003.0011.ChaptersReceptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems
Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems. 2015, 263-294. DOI: 10.1093/med/9780199773893.003.0012.ChaptersProtein phosphorylationSecond messenger-dependent protein kinasesReceptor-channel couplingIon channel proteinsAppropriate biological responseExtracellular signalsDirect phosphorylationSpecific membrane receptorsProtein kinaseRegulatory componentsChannel proteinsSecond messenger systemsMembrane receptorsTransduction mechanismsIon channelsPhosphorylationBiological responsesMessenger systemsIon channel systemsDiversityTarget cellsSignal recognitionNeuronal excitabilityCellsKinaseSensory Receptors
Levitan I, Kaczmarek L. Sensory Receptors. 2015, 295-326. DOI: 10.1093/med/9780199773893.003.0013.ChaptersDiversity in the Structure and Function of Ion Channels
Levitan I, Kaczmarek L. Diversity in the Structure and Function of Ion Channels. 2015, 127-150. DOI: 10.1093/med/9780199773893.003.0007.ChaptersIon channelsPotassium channelsFormation of heterotetramersAlternative splicingIndividual genesMultiple genesAuxiliary subunitsTwo-poreDiverse familyHuman diseasesMolecular biologyMessenger RNASubunitsDiversityGenesRectifier channelsVoltage-dependent sodiumChannel propertiesPatch-clamp techniqueSplicingDifferent mechanismsHeterotetramerClamp techniqueElectrophysiological measurementsRNA
2014
More Than a Pore: Ion Channel Signaling Complexes
Lee A, Fakler B, Kaczmarek LK, Isom LL. More Than a Pore: Ion Channel Signaling Complexes. Journal Of Neuroscience 2014, 34: 15159-15169. PMID: 25392484, PMCID: PMC4228125, DOI: 10.1523/jneurosci.3275-14.2014.Peer-Reviewed Original ResearchConceptsIon channelsHeterologous expression systemIon channel complexSignaling ComplexFunctional dissectionHuman genomeMolecular basisExpression systemSecond messengerHuman diseasesChannel complexCellular excitabilityProteinNew insightsSuch interactionsInteractomeGenomeUnexpected propertiesComplexesMessengerPathwayInteractionDysregulationLocalizationVivoUse of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors.
Fleming MR, Shamah SM, Kaczmarek LK. Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors. Journal Of Visualized Experiments 2014, e51307. PMID: 24562095, PMCID: PMC4122194, DOI: 10.3791/51307.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsOptical biosensorPlasma membraneLabel-free optical biosensorProtein-protein interactionsIon channelsChannel-protein interactionsExcitable cell typesReceptor tyrosine kinasesProtein-coupled receptorsLigand-induced changesCell surface receptorsPotassium channelsRegulatory proteinsTyrosine kinaseG proteinsProtein behaviorSodium-activated potassium channelsExogenous labelsPhysiological relevanceCell adhesionLiving cellsCell typesHeteromeric channelsSurface receptors
2010
Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat
Strumbos J, Polley D, Kaczmarek L. Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat. Neuroscience 2010, 167: 567-572. PMID: 20219640, PMCID: PMC2854512, DOI: 10.1016/j.neuroscience.2010.02.046.Peer-Reviewed Original ResearchMeSH KeywordsAcoustic StimulationAdaptation, PhysiologicalAnimalsAntibody SpecificityAuditory PathwaysAuditory ThresholdImmunohistochemistryIon Channel GatingNerve Tissue ProteinsNeuronal PlasticityRatsRats, Sprague-DawleyReaction TimeRhombencephalonShaw Potassium ChannelsSound LocalizationSynaptic TransmissionTime FactorsUp-RegulationConceptsTotal cellular levelsCytoplasmic C-terminusCellular levelVoltage-gated potassium channel subunitsPotassium channel subunitsTonotopic distributionAdult ratsC-terminusChannel proteinsChannel subunitsSound localization circuitIon channelsProteinExperience-dependent plasticityCultured neuronsPotassium channelsHigh-frequency stimuliAcute slicesMedial nucleusSynaptic activityAuditory neuronsKv3.1 proteinMin of exposureAction potentialsAcoustic stimulation
2009
Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors
Fleming MR, Kaczmarek LK. Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors. Journal Of Receptors And Signal Transduction 2009, 29: 173-181. PMID: 19640220, PMCID: PMC3727623, DOI: 10.1080/10799890903056883.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsProtein-coupled receptorsPlasma membraneIon channelsActivation of GPCRsProtein-protein interactionsDistribution of massExcitable cell typesPotassium channelsRefractive indexHeteromeric channel complexesOptical sensorsOptical biosensorSlack potassium channelsSurface of cellsRegulatory proteinsMass distributionGPCR activationSodium-activated potassium channelsLiving cellsCell typesElectrical propertiesChannel complexBiophysical propertiesProtein
2008
PKC-Induced Intracellular Trafficking of CaV2 Precedes Its Rapid Recruitment to the Plasma Membrane
Zhang Y, Helm JS, Senatore A, Spafford JD, Kaczmarek LK, Jonas EA. PKC-Induced Intracellular Trafficking of CaV2 Precedes Its Rapid Recruitment to the Plasma Membrane. Journal Of Neuroscience 2008, 28: 2601-2612. PMID: 18322103, PMCID: PMC2830008, DOI: 10.1523/jneurosci.4314-07.Peer-Reviewed Original ResearchConceptsProtein kinase CActivation of PKCPlasma membraneGrowth conesLatrunculin BIntracellular traffickingActin polymerizationIntact microtubulesIntact actinKinase CChannel insertionPKC activationIon channelsMicrotubule polymerizationRapid recruitmentOrganellesLamellipodiumSubunitsMicrotubulesActinMembraneActivationRecruitmentCone terminalsNew sites