Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms
Flaherty E, Brennand K. Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Research 2015, 1655: 283-293. PMID: 26581337, PMCID: PMC4865445, DOI: 10.1016/j.brainres.2015.11.009.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCopy number variationsIsogenic hiPSC linesRare variantsFull genetic architectureGenome editing technologyPluripotent stem cellsStrong heritable componentPatient-derived humanGenetic architectureEditing technologyHeritable componentBehavioral defectsNumber variationsNew therapeutic targetsHiPSC linesGenetic backgroundStem cellsCommon variantsFunctional contributionDisease mechanismsSingle variantMouse modelHigh penetranceHiPSCsTherapeutic target