2023
Diacylglycerol-dependent hexamers of the SNARE-assembling chaperone Munc13-1 cooperatively bind vesicles
Li F, Grushin K, Coleman J, Pincet F, Rothman J. Diacylglycerol-dependent hexamers of the SNARE-assembling chaperone Munc13-1 cooperatively bind vesicles. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2306086120. PMID: 37883433, PMCID: PMC10623011, DOI: 10.1073/pnas.2306086120.Peer-Reviewed Original ResearchTurbocharging synaptic transmission
Rothman J, Grushin K, Bera M, Pincet F. Turbocharging synaptic transmission. FEBS Letters 2023, 597: 2233-2249. PMID: 37643878, DOI: 10.1002/1873-3468.14718.Peer-Reviewed Original ResearchRoles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery
Sundaram R, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst A, Gupta K, Rothman J, Krishnakumar S. Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2309516120. PMID: 37590407, PMCID: PMC10450444, DOI: 10.1073/pnas.2309516120.Peer-Reviewed Original ResearchConceptsCore protein machineryRelease-ready vesiclesSynaptic vesicle primingVesicle primingProtein machinerySingle-molecule imagingSNAREpin assemblyFunctional intermediatesFunctional reconstitutionMunc13DiacylglycerolCoordinated actionMunc18VesiclesMachineryComplete reconstitutionNew roleSelective effectDetailed characterizationChaperonesRate of caReconstitutionVAMP2ComplexinMutations
2022
Munc13 structural transitions and oligomers that may choreograph successive stages in vesicle priming for neurotransmitter release
Grushin K, Kalyana Sundaram RV, Sindelar CV, Rothman JE. Munc13 structural transitions and oligomers that may choreograph successive stages in vesicle priming for neurotransmitter release. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2121259119. PMID: 35135883, PMCID: PMC8851502, DOI: 10.1073/pnas.2121259119.Peer-Reviewed Original Research
2020
In Vitro Configuration of Munc13-1 Bridging of Phospholipid Bilayers at Resting Conditions
Grushin K, Sundaram R, Gibson K, Krishnakumar S, Sindelar C, Rothman J. In Vitro Configuration of Munc13-1 Bridging of Phospholipid Bilayers at Resting Conditions. Biophysical Journal 2020, 118: 400a. DOI: 10.1016/j.bpj.2019.11.2272.Peer-Reviewed Original Research
2018
Structural Insight into the Interaction of Synaptotagmin-1 and Snare Complex on Lipid Bilayer by Cryo-Electron Microscopy
Grushin K, Wang J, Coleman J, Rothman J, Sindelar C, Krishnakumar S. Structural Insight into the Interaction of Synaptotagmin-1 and Snare Complex on Lipid Bilayer by Cryo-Electron Microscopy. Biophysical Journal 2018, 114: 282a. DOI: 10.1016/j.bpj.2017.11.1622.Peer-Reviewed Original Research
2017
Reversible stacking of lipid nanodiscs for structural studies of clotting factors
Grushin K, White M, Stoilova-McPhie S. Reversible stacking of lipid nanodiscs for structural studies of clotting factors. Nanotechnology Reviews 2017, 6: 139-148. DOI: 10.1515/ntrev-2016-0073.Peer-Reviewed Original ResearchMembrane scaffold proteinND populationMembrane-associated proteinsDifferent membrane scaffold proteinsSize of nanodiscsDiscoidal phospholipid bilayerLipid nanodiscsLipid ratioCryo-EMBiophysical studiesMacromolecular compositionFunctional studiesNanodiscsLipid compositionStructural studiesPhospholipid bilayersProteinMillimolar concentrationsCa2Lipid mixturesMSP1D1ND formMicroscopy studiesElectron microscopy studiesPopulation
2016
Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5)
Georgieva E, Borbat P, Grushin K, Stoilova-McPhie S, Kulkarni N, Liang Z, Freed J. Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5). Frontiers In Physiology 2016, 7: 317. PMID: 27524969, PMCID: PMC4965473, DOI: 10.3389/fphys.2016.00317.Peer-Reviewed Original ResearchTransmembrane domainDouble electron-electron resonanceSingle transmembrane helixM2 transmembrane domainCore transmembrane domainNoticeable conformational changesC-terminal sideJuxtamembrane residuesTransmembrane helicesOligomer equilibriumHelix bundleConformational rearrangementsGolgi apparatusConformational responseM2 proteinStable tetramerConformational changesExit poreProton channelChannel closureG34A mutationSpecific mutationsLipid bilayersLow pH environmentViral cycleEPR and Electron Microscopy Study of the Influenza a M2 Transmembrane Domain Assembly and Drug Response
Georgieva E, Borbat P, Grushin K, Stoilova-McPhie S, Kulkarni N, Liang Z, Freed J. EPR and Electron Microscopy Study of the Influenza a M2 Transmembrane Domain Assembly and Drug Response. Biophysical Journal 2016, 110: 445a-446a. DOI: 10.1016/j.bpj.2015.11.2397.Peer-Reviewed Original Research
2015
Factor VIII organisation on nanodiscs with different lipid composition
Grushin K, Miller J, Dalm D, Stoilova-McPhie S. Factor VIII organisation on nanodiscs with different lipid composition. Thrombosis And Haemostasis 2015, 113: 741-749. PMID: 25589466, DOI: 10.1160/th14-09-0725.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsBinding SitesFactor VIIIImage Processing, Computer-AssistedImaging, Three-DimensionalMembrane ProteinsMembranes, ArtificialMicroscopy, Electron, TransmissionNanostructuresPhosphatidylserinesProtein BindingProtein ConformationProtein FoldingProtein MultimerizationRecombinant ProteinsSurface PropertiesSwineConceptsMembrane-bound factor VIIISingle-particle electron microscopyProtein-membrane interfaceElectron microscopyComplex assemblyBinding of FVIIIFVIII formsSingle-particle reconstructionDifferent lipid compositionsFunctional studiesNanodiscsProteinLipid compositionPhysiological conditionsFurther assemblyPhosphatidylserineStructural studiesMembrane patchesMembranePlatelet membranesStructure determinationNormal haemostasisParticle reconstructionComplexesAssemblyDimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes
Dalm D, Galaz-Montoya J, Miller J, Grushin K, Villalobos A, Koyfman A, Schmid M, Stoilova-McPhie S. Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes. Scientific Reports 2015, 5: 11212. PMID: 26082135, PMCID: PMC4469981, DOI: 10.1038/srep11212.Peer-Reviewed Original ResearchConceptsMembrane-bound factor VIIIMembrane-binding domainCryo-electron microscopyMembrane-bound structuresSerine protease factor IXaDeficiency of FVIIIDimeric organizationSubtomogram averagingComplex assemblyHelical reconstructionLipid nanotubesCritical functionsFactor IXaBlood coagulationBlood coagulation factor VIIIStructural informationCrystal structureCritical stepPlatelet membranesPlatelet surfaceSevere bleeding disorderCoagulation factor VIIIIntermediate resolutionBleeding disorderMembranePS-GC Nanodiscs Assembly for Structural Studies of Coagulation Proteins and Their Complexes
Grushin K, Stoilova-McPhie S. PS-GC Nanodiscs Assembly for Structural Studies of Coagulation Proteins and Their Complexes. Biophysical Journal 2015, 108: 175a. DOI: 10.1016/j.bpj.2014.11.966.Peer-Reviewed Original ResearchMembrane-Induced Dimerization of Coagulation Factor VIII
Dalm D, Grushin K, Miller J, Pettitt M, Stoilova-McPhie S. Membrane-Induced Dimerization of Coagulation Factor VIII. Biophysical Journal 2015, 108: 39a. DOI: 10.1016/j.bpj.2014.11.243.Peer-Reviewed Original Research
2014
Lipid nanotechnologies for structural studies of membrane‐associated proteins
Stoilova‐McPhie S, Grushin K, Dalm D, Miller J. Lipid nanotechnologies for structural studies of membrane‐associated proteins. Proteins Structure Function And Bioinformatics 2014, 82: 2902-2909. PMID: 24957666, PMCID: PMC5292012, DOI: 10.1002/prot.24631.Peer-Reviewed Original ResearchConceptsMembrane-associated proteinsLipid nanotechnologyLipid nanotubesAqueous solutionStructural studiesStructure determinationCryo-EMND technologiesCryo-electron microscopyLipid nanodisksScaffold proteinMembrane curvatureMacromolecular organizationRich membranesLipid bilayersPhysiological environmentProteinNanotechnologyLipid compositionNanotubesPhysiological conditionsAtomic structureFunctional structureProof of principleNanodisksHelical organization of blood coagulation factor VIII on lipid nanotubes.
Miller J, Dalm D, Koyfman A, Grushin K, Stoilova-McPhie S. Helical organization of blood coagulation factor VIII on lipid nanotubes. Journal Of Visualized Experiments 2014 PMID: 24961276, PMCID: PMC4126079, DOI: 10.3791/51254.Peer-Reviewed Original ResearchConceptsCryo-electron microscopyFVIII formsThree-dimensional structure analysisMembrane-bound stateMembrane-bound structuresSerine protease factor IXaBlood coagulation factor VIIIHelical organizationDeficiency of FVIIISequence proteinFunctional complexLipid nanotubesCryo-EMDetailed protocolProteolytic activationLipid nanotechnologyStructure analysisCoagulation factor VIIIFVIII bindsPowerful approachProteinFunctional structureStructural informationPlatelet membranesMembraneHelical Organization of Blood Coagulation Factor VIII on Lipid Nanotubes
Miller J, Dalm D, Koyfman A, Grushin K, Stoilova-McPhie S. Helical Organization of Blood Coagulation Factor VIII on Lipid Nanotubes. Journal Of Visualized Experiments 2014 DOI: 10.3791/51254-v.Peer-Reviewed Original ResearchLack of recombinant factor VIII B‐domain induces phospholipid vesicle aggregation: implications for the immunogenicity of factor VIII
Grushin K, Miller J, Dalm D, Parker E, Healey J, Lollar P, Stoilova-McPhie S. Lack of recombinant factor VIII B‐domain induces phospholipid vesicle aggregation: implications for the immunogenicity of factor VIII. Haemophilia 2014, 20: 723-731. PMID: 24750465, PMCID: PMC4149818, DOI: 10.1111/hae.12421.Peer-Reviewed Original ResearchConceptsFVIII formsB domainFVIII-BDDPhospholipid vesicle aggregationFactor VIII B domainCryo-electron microscopyMembrane-bound statePhospholipid vesiclesMembrane-bound formSerine protease factor IXaPhysiological conditionsFVIII B domainSecondary structure distributionCryo-EMVesicle aggregationBiophysical propertiesCircular dichroismProtein therapeuticsVesiclesTenase complexPhospholipid membranesPlatelet surfaceHuman factor VIIIFactor IXaHereditary bleeding disordersStructures of Blood Coagulation Factor VIII in Solution and Membrane-Bound
Koyfman A, Miller J, Dalm D, Grushin K, Stoilova-McPhie S. Structures of Blood Coagulation Factor VIII in Solution and Membrane-Bound. Biophysical Journal 2014, 106: 635a. DOI: 10.1016/j.bpj.2013.11.3510.Peer-Reviewed Original ResearchResolving the Structural Basis of Factor VIII Activation
Dalm D, Grushin K, Koyfman A, Miller J, Stoilova-McPhie S. Resolving the Structural Basis of Factor VIII Activation. Biophysical Journal 2014, 106: 599a. DOI: 10.1016/j.bpj.2013.11.3319.Peer-Reviewed Original ResearchHelical Organization of Coagulation Factor VIII on Lipid Nanotubes
Stoilova-McPhie S, Miller J, Dalm D, Grushin K. Helical Organization of Coagulation Factor VIII on Lipid Nanotubes. Biophysical Journal 2014, 106: 599a. DOI: 10.1016/j.bpj.2013.11.3315.Peer-Reviewed Original Research