2024
Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing
Carrocci T, Neugebauer K. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Molecular Cell 2024, 84: 3656-3666. PMID: 39366353, PMCID: PMC11463726, DOI: 10.1016/j.molcel.2024.08.036.Peer-Reviewed Original ResearchConceptsPre-mRNA splicingCo-transcriptional pre-mRNA splicingCo-transcriptional RNA foldingCo-transcriptional processesRNA polymerase IIPre-messenger RNAFunctional messenger RNAsCapping enzymePolymerase IIDelayed splicingPolyadenylation machinerySplicing eventsPre-mRNAGene regulationMacromolecular machinesRNA foldingRNA synthesisMRNA isoformsProtein productionGene expressionSplicingRNARegulatory importanceCross-regulationMessenger RNA
2013
The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells
Pabis M, Neufeld N, Steiner MC, Bojic T, Shav-Tal Y, Neugebauer KM. The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells. RNA 2013, 19: 1054-1063. PMID: 23793891, PMCID: PMC3708526, DOI: 10.1261/rna.037069.112.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesGenes, fosGuanosineHeLa CellsHumansModels, BiologicalNuclear Cap-Binding Protein ComplexProtein Interaction Domains and MotifsRibonucleoprotein, U1 Small NuclearRibonucleoprotein, U4-U6 Small NuclearRibonucleoprotein, U5 Small NuclearRNA InterferenceRNA PrecursorsRNA SplicingSpliceosomesConceptsCap-binding complexCotranscriptional spliceosome assemblyU4/Spliceosome assemblySpliceosomal snRNPsRNA polymerase II transcriptsNuclear cap-binding complexPolymerase II transcriptsRecruitment of U1RNA-independent fashionActive transcription unitsPre-mRNA splicingLive-cell imaging assaysNonsense-mediated decayNetwork of interactionsRNA biogenesisGuanosine capSnRNP biogenesisMiRNA biogenesisTri-snRNPSnRNA exportSnRNP proteinsTranscription unitChromatin immunoprecipitationMammalian cells
2011
Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain
Görnemann J, Barrandon C, Hujer K, Rutz B, Rigaut G, Kotovic KM, Faux C, Neugebauer KM, Séraphin B. Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain. RNA 2011, 17: 2119-2129. PMID: 22020974, PMCID: PMC3222125, DOI: 10.1261/rna.02646811.Peer-Reviewed Original ResearchConceptsC-terminal domainWW domainsSpliceosome assemblyU1 snRNPPol II C-terminal domainCotranscriptional spliceosome assemblyComplex cellular functionsRNA polymerase IIProtein-protein interactionsPre-mRNA splicingU2 snRNP recruitmentSplice site recognitionCotranscriptional recruitmentTranscriptional machineryPolymerase IIPol IIU5 snRNPLarge subunitSplicing factorsCellular functionsStable heterodimerComplex assemblyPrp40Spliceosome formationAffinity purificationThe In Vivo Kinetics of RNA Polymerase II Elongation during Co-Transcriptional Splicing
Brody Y, Neufeld N, Bieberstein N, Causse SZ, Böhnlein EM, Neugebauer KM, Darzacq X, Shav-Tal Y. The In Vivo Kinetics of RNA Polymerase II Elongation during Co-Transcriptional Splicing. PLOS Biology 2011, 9: e1000573. PMID: 21264352, PMCID: PMC3019111, DOI: 10.1371/journal.pbio.1000573.Peer-Reviewed Original ResearchMeSH KeywordsBeta-GlobinsFluorescence Recovery After PhotobleachingGreen Fluorescent ProteinsHumansIntronsInverted Repeat SequencesLac RepressorsRecombinant Fusion ProteinsRibonucleoproteins, Small NuclearRNA Polymerase IIRNA PrecursorsRNA SplicingRNA, MessengerSpliceosomesTranscription, GeneticTumor Cells, CulturedConceptsNumber of intronsU1 snRNPPol II elongation ratesRNA polymerase II elongationRNA polymerase II enzymeSplicing-independent roleTranscription elongation kineticsIntron-containing genesCo-transcriptional splicingPolymerase II elongationCompletion of splicingTranscribed pre-mRNARNA processing eventsInducible gene constructsPol II elongationElongation ratePolymerase elongation ratesNascent RNATranscriptional elongationIntronless genesSpliceosome componentsTranscription terminationSplicing machineryTranscription sitesGene end
2010
Global Analysis of Nascent RNA Reveals Transcriptional Pausing in Terminal Exons
Oesterreich F, Preibisch S, Neugebauer KM. Global Analysis of Nascent RNA Reveals Transcriptional Pausing in Terminal Exons. Molecular Cell 2010, 40: 571-581. PMID: 21095587, DOI: 10.1016/j.molcel.2010.11.004.Peer-Reviewed Original ResearchConceptsTerminal exonNascent RNATranscription profilesIntron-containing genesHigh-density tiling microarraysPre-mRNA splicingSplicing kineticsTranscriptional pausingTiling microarraysPol IISplicing catalysisSplicing efficiencyGenes lackSplicingExonsTranscriptionGenesRNAGlobal analysisFunctional couplingSilico simulationsIntronlessSpliceosomePausingYeastThe differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells
Huranová M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Staněk D. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. Journal Of Cell Biology 2010, 191: 75-86. PMID: 20921136, PMCID: PMC2953428, DOI: 10.1083/jcb.201004030.Peer-Reviewed Original ResearchConceptsSmall nuclear RNP particlesPrecursor messenger RNA splicingMessenger RNA splicingBinding of U1Live-cell imagingRate of splicingNuclear RNP particlesLarge ribonucleoproteinSnRNP componentsRNA splicingSpliceosome assemblyAdditional proteinsRNP particlesHuman cellsSplicingLiving cellsCell nucleiDifferential interactionsEndogenous levelsSpliceosomeMRNARibonucleoproteinCell imagingCore componentCellsDynamic control of Cajal body number during zebrafish embryogenesis
Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus 2010, 1: 96-108. PMID: 21327108, PMCID: PMC3035118, DOI: 10.4161/nucl.1.1.10680.Peer-Reviewed Original ResearchConceptsCajal bodiesEnd processing factorsGene expressionZygotic genome activationZygotic gene expressionRNA processing machineryDistinct nuclear bodiesMRNA splicing machineryCajal body numberLive-cell imagingCB numberHours of developmentGenome activationZebrafish embryogenesisNuclear subcompartmentsSnRNP biogenesisSplicing machineryZebrafish embryosCell divisionNuclear bodiesCB assemblyEmbryonic cellsMaternal contributionProcessing machineryEmbryos
1998
Regulation of Alternative Polyadenylation by U1 snRNPs and SRp20
Lou H, Neugebauer K, Gagel R, Berget S. Regulation of Alternative Polyadenylation by U1 snRNPs and SRp20. Molecular And Cellular Biology 1998, 18: 4977-4985. PMID: 9710581, PMCID: PMC109082, DOI: 10.1128/mcb.18.9.4977.Peer-Reviewed Original ResearchAnimalsBase SequenceCalcitoninCalcitonin Gene-Related PeptideConsensus SequenceEnhancer Elements, GeneticExonsHumansMetallothioneinMiceMolecular Sequence DataPoly ARatsRibonucleoprotein, U1 Small NuclearRNA PrecursorsRNA Processing, Post-TranscriptionalRNA-Binding ProteinsSequence AlignmentSequence Homology, Nucleic AcidSerine-Arginine Splicing FactorsThyroid GlandVertebrates
1997
Transcription units as RNA processing units
Neugebauer K, Roth M. Transcription units as RNA processing units. Genes & Development 1997, 11: 3279-3285. PMID: 9407022, DOI: 10.1101/gad.11.24.3279.Peer-Reviewed Original ResearchDistribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription.
Neugebauer K, Roth M. Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. Genes & Development 1997, 11: 1148-1159. PMID: 9159396, DOI: 10.1101/gad.11.9.1148.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalBinding SitesCell NucleusFluorescent Antibody Technique, IndirectHeLa CellsHumansNuclear ProteinsPhosphoproteinsRibonucleoproteins, Small NuclearRNA Polymerase IIRNA PrecursorsRNA SplicingRNA-Binding ProteinsSerine-Arginine Splicing FactorsTranscription, GeneticUridine TriphosphateConceptsRNA polymerase II transcriptionPolymerase II transcriptionMRNA splicing factorsSplicing factorsSR familyPre-mRNA splicingVisualization of hundredsHeLa cell nucleiSplicing regulatorsActive genesTranscription unitMRNA splicingGene regulatorsGene transcriptionPre-mRNADistinct functionsRNA synthesisTranscriptionCell nucleiSplicingSingle memberRegulatorActive site
1995
A conserved epitope on a subset of SR proteins defines a larger family of Pre-mRNA splicing factors.
Neugebauer K, Stolk J, Roth M. A conserved epitope on a subset of SR proteins defines a larger family of Pre-mRNA splicing factors. Journal Of Cell Biology 1995, 129: 899-908. PMID: 7538140, PMCID: PMC2120486, DOI: 10.1083/jcb.129.4.899.Peer-Reviewed Original Research
1993
Distinct Functions of SR Proteins in Alternative pre-mRNA Splicing
Zahler A, Neugebauer K, Lane W, Roth M. Distinct Functions of SR Proteins in Alternative pre-mRNA Splicing. Science 1993, 260: 219-222. PMID: 8385799, DOI: 10.1126/science.8385799.Peer-Reviewed Original ResearchConceptsSR proteinsAlternative splicingDistinct functionsAlternative pre-mRNA splicingPrecursor messenger RNAMRNA splicing factorsPre-mRNA splicingSR familySplicing factorsMRNA splicingVariety of tissuesGene expressionSplicingMessenger RNAProteinCommon mechanismFundamental roleFamilyRNARegulationExpressionEntire familyFunctionMembers