2022
Cerebral arterial and ventricular morphology of the dogfish (Squalus acanthias), American bullfrog (Rana catesbeiana), and green iguana (Iguana iguana): Arterial high‐resolution micro‐CT, dissection, and radiography study
Kier E, Conlogue G, VanHouten J. Cerebral arterial and ventricular morphology of the dogfish (Squalus acanthias), American bullfrog (Rana catesbeiana), and green iguana (Iguana iguana): Arterial high‐resolution micro‐CT, dissection, and radiography study. The Anatomical Record 2022, 306: 2015-2029. PMID: 35778853, DOI: 10.1002/ar.25028.Peer-Reviewed Original ResearchConceptsMicro-CT imagesHigh-resolution micro-CTMicro-CTMicro-computed tomography (CT) imagingMicro-CT imagingArterial morphologyVenous cerebral circulationSequential displayGreen iguanasCerebral circulationVentricular morphologyRadiopaque contrastArterial circulationCorrosionArterial branchesVentricular systemRadiography studiesMorphologyArterial segmentsArterial structureAnatomic informationTomography imagingBrainArterial capillariesArterial network
2017
HER2 signaling regulates HER2 localization and membrane retention
Jeong J, Kim W, Kim LK, VanHouten J, Wysolmerski JJ. HER2 signaling regulates HER2 localization and membrane retention. PLOS ONE 2017, 12: e0174849. PMID: 28369073, PMCID: PMC5378417, DOI: 10.1371/journal.pone.0174849.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsApoptosisBreast NeoplasmsCalciumCell Line, TumorCell MembraneCell ProliferationErbB ReceptorsGene Knockdown TechniquesHumansIntracellular SpaceLapatinibPlasma Membrane Calcium-Transporting ATPasesQuinazolinesReceptor, ErbB-2Receptor, ErbB-3RNA, Small InterferingUbiquitinationConceptsMembrane protrusionsCell surfaceSpecific plasma membrane domainsPlasma membrane domainsReceptor tyrosine kinasesMembrane domainsErbB family membersErbB3/HER3Tyrosine kinaseGenetic knockdownHER2 ubiquitinationHER2/HER3PMCA2 expressionPharmacologic inhibitionUbiquitinationERBB2 geneHsp90HER2/EGFRCalcium pumpMembrane retentionInternalizationHuman breast cancerFamily membersHER3ExpressionThe scaffolding protein NHERF1 regulates the stability and activity of the tyrosine kinase HER2
Jeong J, VanHouten JN, Kim W, Dann P, Sullivan C, Choi J, Sneddon WB, Friedman PA, Wysolmerski JJ. The scaffolding protein NHERF1 regulates the stability and activity of the tyrosine kinase HER2. Journal Of Biological Chemistry 2017, 292: 6555-6568. PMID: 28235801, PMCID: PMC5399107, DOI: 10.1074/jbc.m116.770883.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAnimalsApoptosisBreast NeoplasmsCalciumCell Line, TumorCell MembraneCell ProliferationFemaleGene Expression ProfilingGene Expression Regulation, NeoplasticGene Knockdown TechniquesHSP90 Heat-Shock ProteinsHumansMiceMicroscopy, FluorescencePhosphoproteinsPlasma Membrane Calcium-Transporting ATPasesReceptor, ErbB-2RNA, MessengerSignal TransductionSodium-Hydrogen ExchangersConceptsBreast cancerHER2-positive breast cancerHER2-positive statusInvasive breast cancerHuman ductal carcinomaDegradation of HER2Normal mammary epithelial cellsMalignant breast cellsBreast cancer cellsErbB2/HER2Tyrosine kinase HER2Sodium-hydrogen exchanger regulatory factor-1Ductal carcinomaHER2 expressionExchanger regulatory factor 1Mammary epithelial cellsHER2Regulatory factor 1NHERF1 expressionBreast cellsEpithelial cellsCancerCancer cellsFactor 1PMCA2
2016
Calcium-Sensing Receptor Promotes Breast Cancer by Stimulating Intracrine Actions of Parathyroid Hormone–Related Protein
Kim W, Takyar FM, Swan K, Jeong J, VanHouten J, Sullivan C, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J. Calcium-Sensing Receptor Promotes Breast Cancer by Stimulating Intracrine Actions of Parathyroid Hormone–Related Protein. Cancer Research 2016, 76: 5348-5360. PMID: 27450451, PMCID: PMC5026591, DOI: 10.1158/0008-5472.can-15-2614.Peer-Reviewed Original ResearchConceptsMMTV-PyMT miceBreast cancer cellsCaSR activationBone metastasesBreast cancerInhibited tumor cell proliferationOsteolytic bone metastasesCancer cellsHuman breast cancer cell linesCalcium-sensing receptorHuman breast cancer cellsHormone-related proteinTransgenic mouse modelBreast cancer cell linesMMTV-PyMT transgenic mouse modelBreast cancer progressionTumor cell proliferationTumor cell growthCancer cell linesPTHrP levelsTissue-specific disruptionHigh extracellular concentrationsPTHrP productionCASR genePTHrP expressionPMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer
Jeong J, VanHouten JN, Dann P, Kim W, Sullivan C, Yu H, Liotta L, Espina V, Stern DF, Friedman PA, Wysolmerski JJ. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: e282-e290. PMID: 26729871, PMCID: PMC4725473, DOI: 10.1073/pnas.1516138113.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCalciumCarcinogenesisCell Line, TumorCell MembraneCell ProliferationCell SurvivalEndocytosisFemaleFluorescent Antibody TechniqueForkhead Box Protein O1Forkhead Transcription FactorsGene Knockdown TechniquesHSP90 Heat-Shock ProteinsHumansImmunoblottingIntracellular SpaceMammary Neoplasms, AnimalMicePlasma Membrane Calcium-Transporting ATPasesProtein BindingProtein TransportReceptor, ErbB-2Signal TransductionSurvival AnalysisConceptsBreast cancerHigh tumor levelsDegradation of HER2Increases Intracellular CalciumMouse mammary tumor virusBreast cancer cellsMammary tumor virusPMCA2 levelsNeu miceTumor levelsFormation of tumorsHER2 levelsIntracellular calciumTherapeutic targetBreast tumorsHER2Milk calciumExpression correlatesCancerHSP 90Mammary glandCancer cellsTumor virusTumorsCalcium
2015
OPG Treatment Prevents Bone Loss During Lactation But Does Not Affect Milk Production or Maternal Calcium Metabolism
Ardeshirpour L, Dumitru C, Dann P, Sterpka J, VanHouten J, Kim W, Kostenuik P, Wysolmerski J. OPG Treatment Prevents Bone Loss During Lactation But Does Not Affect Milk Production or Maternal Calcium Metabolism. Endocrinology 2015, 156: 2762-2773. PMID: 25961842, PMCID: PMC4511126, DOI: 10.1210/en.2015-1232.Peer-Reviewed Original ResearchConceptsBone lossOPG treatmentOsteoblast numberActivated B cells ligandLactational bone lossMaternal calcium homeostasisMaternal calcium metabolismMilk calcium levelsRapid bone lossDietary calcium intakeMaternal bone lossBone resorption rateMaternal hypocalcemiaRecombinant OPGCalcium intakeMaternal deathsOsteoprotegerin levelsMaternal skeletonBone turnoverDietary calciumCalcium metabolismOsteoclast numberBone massOsteoclast activityAnabolic response
2014
Evaluation of Cranial Bone Transport Distraction With and Without Adipose Grafting
Koch FP, Yuhasz MM, Travieso R, Wong K, Clune J, Zhuang ZW, Van Houten J, Steinbacher DM. Evaluation of Cranial Bone Transport Distraction With and Without Adipose Grafting. Journal Of Craniofacial Surgery 2014, 25: 766-771. PMID: 24820707, DOI: 10.1097/scs.0000000000000769.Peer-Reviewed Original ResearchDeletion of the Nuclear Localization Sequences and C-Terminus of PTHrP Impairs Embryonic Mammary Development but also Inhibits PTHrP Production
Boras-Granic K, Dann P, VanHouten J, Karaplis A, Wysolmerski J. Deletion of the Nuclear Localization Sequences and C-Terminus of PTHrP Impairs Embryonic Mammary Development but also Inhibits PTHrP Production. PLOS ONE 2014, 9: e90418. PMID: 24785493, PMCID: PMC4006745, DOI: 10.1371/journal.pone.0090418.Peer-Reviewed Original ResearchConceptsMammary gland developmentType 1 PTH/PTHrP receptorC-terminusEmbryonic mammary gland developmentPTH/PTHrP receptorGland developmentPTHrP mRNA levelsNuclear localization signalNuclear localization sequenceHormone-related proteinEmbryonic mammary developmentMammary epithelial cellsLocalization signalNuclear functionsPTHrP productionPTHrP receptorAlternative animal modelLocalization sequencePTHR1 geneAnimal modelsEndocrine fashionMutant formsPTHrPDevelopmental defectsMesenchyme differentiationPeriosteal PTHrP regulates cortical bone modeling during linear growth in mice
Wang M, VanHouten JN, Nasiri AR, Tommasini SM, Broadus AE. Periosteal PTHrP regulates cortical bone modeling during linear growth in mice. Journal Of Anatomy 2014, 225: 71-82. PMID: 24762197, PMCID: PMC4073294, DOI: 10.1111/joa.12184.Peer-Reviewed Original ResearchConceptsMetaphyseal-diaphyseal junctionParathyroid hormone-related peptideEndocortical bone formationCD-1 miceNF-kB ligandHormone-related peptideMineral apposition rateCortical bone modelingEntire boneLinear growthAnteromedial cortexCKO miceProximal tibiaLateral tibiaReceptor activatorOC numberApposition rateOsteoclastic resorptionPTHrPBone modelingBone formationFibulaLong bonesMicePeriosteumComparing calvarial transport distraction with and without radiation and fat grafting
Yuhasz MM, Koch FP, Kwiatkowski A, Young C, Clune J, Travieso R, Wong K, Van Houten J, Steinbacher DM. Comparing calvarial transport distraction with and without radiation and fat grafting. Journal Of Cranio-Maxillofacial Surgery 2014, 42: 1412-1422. PMID: 24864072, DOI: 10.1016/j.jcms.2014.04.003.Peer-Reviewed Original ResearchConceptsNon-irradiated animalsFat graftingBone densityTransport distractionMale New Zealand white rabbitsNew Zealand white rabbitsZealand white rabbitsTransport distraction osteogenesisOsseous fillBony regenerateWhite rabbitsDistraction osteogenesisDistraction siteBone formationCranial reconstructionAnimalsOssificationCranial defectsGraftingDistractionChapter Seven Use of Osmium Tetroxide Staining with Microcomputerized Tomography to Visualize and Quantify Bone Marrow Adipose Tissue In Vivo
Scheller EL, Troiano N, VanHoutan JN, Bouxsein MA, Fretz JA, Xi Y, Nelson T, Katz G, Berry R, Church CD, Doucette CR, Rodeheffer MS, MacDougald OA, Rosen CJ, Horowitz MC. Chapter Seven Use of Osmium Tetroxide Staining with Microcomputerized Tomography to Visualize and Quantify Bone Marrow Adipose Tissue In Vivo. Methods In Enzymology 2014, 537: 123-139. PMID: 24480344, PMCID: PMC4097010, DOI: 10.1016/b978-0-12-411619-1.00007-0.Peer-Reviewed Original ResearchConceptsStromal vascular fractionBone marrowAdipose tissueBone marrow adipose tissueWhite adipose tissue depotsMicrocomputerized tomographyAdipose tissue depotsMarrow recoveryDrug treatmentMedullary canalTissue depotsMetabolic diseasesVascular fractionStromal cellsMarrow fatEndothelial cellsAdipocyte progenitorsMature adipocytesLong bonesMAT volumeAdipocytesStainingOsmium tetroxide stainingHistochemical stainingConventional quantitation
2013
The remarkable migration of the medial collateral ligament
Wang M, Nasiri A, VanHouten JN, Tommasini SM, Broadus AE. The remarkable migration of the medial collateral ligament. Journal Of Anatomy 2013, 224: 490-498. PMID: 24266550, PMCID: PMC3954274, DOI: 10.1111/joa.12145.Peer-Reviewed Original ResearchConceptsMedial collateral ligamentMigratory tractsCollateral ligamentParathyroid hormone-related proteinOsteoclastic bone resorptionHormone-related proteinCortical surfaceInsertions of tendonsInsertion siteBone resorptionLong bone growthPTHrP functionsOsteoclastic activityPeriosteal osteoclastsRegulatory moleculesOsteoblast activityGrowth spurtLong bonesOsteoclastsCortical boneLigamentRecent evidenceHistological techniquesBone surfaceTractMammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual
Mamillapalli R, VanHouten J, Dann P, Bikle D, Chang W, Brown E, Wysolmerski J. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual. Endocrinology 2013, 154: 3031-3042. PMID: 23782944, PMCID: PMC3749485, DOI: 10.1210/en.2012-2195.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBiological TransportBone DevelopmentBone ResorptionCalciumCrosses, GeneticFemaleGene Expression RegulationLactationLactoglobulinsMammary Glands, AnimalMiceMice, KnockoutMice, TransgenicMilkParathyroid HormoneParathyroid Hormone-Related ProteinReceptors, Calcium-SensingRNA, MessengerConceptsRenal calcium excretionCalcium excretionCalcium metabolismBone resorptionCalcium transportMilk calciumMammary glandAccelerated bone resorptionMammary-specific ablationMaternal calcium metabolismDietary calcium intakeCalcium sensing receptorCalcium-sensing receptorSecretion of PTHrPSkeletal calcium storesMilk PTHrPCalcium intakePTH secretionPTHrP secretionMaternal boneBone turnoverBone metabolismOnset of lactationMaternal circulationSystemic calciumThe calcium-sensing receptor in the breast
VanHouten JN, Wysolmerski JJ. The calcium-sensing receptor in the breast. Best Practice & Research Clinical Endocrinology & Metabolism 2013, 27: 403-414. PMID: 23856268, PMCID: PMC3713417, DOI: 10.1016/j.beem.2013.02.011.BooksConceptsG-protein usageBreast cancer cellsCalcium-sensing receptorCalcium metabolismCancer cellsParathyroid hormone-related protein levelsBreast cellsMaternal calcium metabolismOsteolytic skeletal metastasesSystemic calcium metabolismEpithelial cellsNormal breast epithelial cellsFeed-forward cycleMalignant breast cellsNormal breast cellsBreast epithelial cellsSkeletal metastasesPTHrP productionPTHrP expressionMammary epithelial cellsCaSRCalcium transportProtein levelsTransport of calciumSupply of calcium
2012
PTHrP regulates the modeling of cortical bone surfaces at fibrous insertion sites during growth
Wang M, VanHouten JN, Nasiri AR, Johnson RL, Broadus AE. PTHrP regulates the modeling of cortical bone surfaces at fibrous insertion sites during growth. Journal Of Bone And Mineral Research 2012, 28: 598-607. PMID: 23109045, PMCID: PMC3574208, DOI: 10.1002/jbmr.1801.Peer-Reviewed Original ResearchConceptsCortical bone surfaceCortical surfaceParathyroid hormone-related proteinLong bonesHormone-related proteinMedial collateral ligamentBone cell activityBone surfaceLong bone growthTendon insertionForme frusteCollateral ligamentFibrous enthesesInitial genetic evidenceCell activityInsertion sitePTHrPConditional deletionLinear growthEnthesesLigamentPeriosteal componentBiomechanical controlBoneFrusteLactation and Neonatal Nutrition: Defining and Refining the Critical Questions
Neville MC, Anderson SM, McManaman JL, Badger TM, Bunik M, Contractor N, Crume T, Dabelea D, Donovan SM, Forman N, Frank DN, Friedman JE, German JB, Goldman A, Hadsell D, Hambidge M, Hinde K, Horseman ND, Hovey RC, Janoff E, Krebs NF, Lebrilla CB, Lemay DG, MacLean PS, Meier P, Morrow AL, Neu J, Nommsen-Rivers LA, Raiten DJ, Rijnkels M, Seewaldt V, Shur BD, VanHouten J, Williamson P. Lactation and Neonatal Nutrition: Defining and Refining the Critical Questions. Journal Of Mammary Gland Biology And Neoplasia 2012, 17: 167-188. PMID: 22752723, PMCID: PMC3428522, DOI: 10.1007/s10911-012-9261-5.Peer-Reviewed Original ResearchConceptsHuman milk compositionMammary gland developmentGestational diabetesObese mothersPreterm infantsUndernourished mothersMaternal nutritionNeonatal nutritionHuman milkInfant nutritionNeonatal developmentSpecific nutritional challengesSpecific training recommendationsMammary developmentUnanswered questionsHuman lactationMetabolic statusInfantsTherapeutic drugsGland developmentNutritional challengesImportant unanswered questionsMilk componentsBehavioral phenotypesLactationPhosphorus-31 MRI of hard and soft solids using quadratic echo line-narrowing
Frey MA, Michaud M, VanHouten JN, Insogna KL, Madri JA, Barrett SE. Phosphorus-31 MRI of hard and soft solids using quadratic echo line-narrowing. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 5190-5195. PMID: 22431609, PMCID: PMC3325667, DOI: 10.1073/pnas.1117293109.Peer-Reviewed Original Research
2011
Site‐specific changes in bone microarchitecture, mineralization, and stiffness during lactation and after weaning in mice
Liu XS, Ardeshirpour L, VanHouten JN, Shane E, Wysolmerski JJ. Site‐specific changes in bone microarchitecture, mineralization, and stiffness during lactation and after weaning in mice. Journal Of Bone And Mineral Research 2011, 27: 865-875. PMID: 22189918, DOI: 10.1002/jbmr.1503.Peer-Reviewed Original ResearchConceptsWhole bone stiffnessNulliparous miceBone microarchitectureTissue mineralizationBone mineral density BMDIndividual trabecula segmentationDramatic bone lossBone mineral densityBone stiffnessRecovered miceBone lossMineral densityPup weaningEffect of lactationMouse modelSkeletal sitesBone quantityClinical observationsMicro-finite element analysisBone qualitySite-specific changesSkeletal changesDigital topological analysisMiceCortical structuresParathyroid Hormone-Related Protein Is Not Required for Normal Ductal or Alveolar Development in the Post-Natal Mammary Gland
Boras-Granic K, VanHouten J, Hiremath M, Wysolmerski J. Parathyroid Hormone-Related Protein Is Not Required for Normal Ductal or Alveolar Development in the Post-Natal Mammary Gland. PLOS ONE 2011, 6: e27278. PMID: 22087279, PMCID: PMC3210770, DOI: 10.1371/journal.pone.0027278.Peer-Reviewed Original ResearchConceptsMammary glandPTHrP expressionAlveolar developmentMyoepithelial cellsMaternal calcium homeostasisOverexpression of PTHrPRole of PTHrPExpression of PTHrPEmbryonic mammary budPTHrP deficiencyMouse mammary glandParathyroid hormoneTransgenic miceDuctal developmentCalcium homeostasisAlveolar cellsPTHrPPubertal developmentMMTV-CrePost-natal mammary glandMammary developmentMammary budPostnatal mammary glandCre transgenePTHrP geneAn Atypical Degenerative Osteoarthropathy in Hyp Mice is Characterized by a Loss in the Mineralized Zone of Articular Cartilage
Liang G, VanHouten J, Macica C. An Atypical Degenerative Osteoarthropathy in Hyp Mice is Characterized by a Loss in the Mineralized Zone of Articular Cartilage. Calcified Tissue International 2011, 89: 151-162. PMID: 21643724, DOI: 10.1007/s00223-011-9502-4.Peer-Reviewed Original Research