2022
Reward and loss incentives improve spatial working memory by shaping trial-by-trial posterior frontoparietal signals
Cho YT, Moujaes F, Schleifer CH, Starc M, Ji JL, Santamauro N, Adkinson B, Kolobaric A, Flynn M, Krystal JH, Murray JD, Repovs G, Anticevic A. Reward and loss incentives improve spatial working memory by shaping trial-by-trial posterior frontoparietal signals. NeuroImage 2022, 254: 119139. PMID: 35346841, PMCID: PMC9264479, DOI: 10.1016/j.neuroimage.2022.119139.Peer-Reviewed Original ResearchConceptsMemory precisionSpatial working memoryIntraparietal sulcusPrecentral sulcusWorking memoryMotivational signalsBOLD signalParietal cortexReward/lossVisual association regionsDorsolateral prefrontal cortexGoal-directed activityMemory paradigmMemory performanceMemory processesAnterior parietal cortexExecutive networkNeural changesSensory processesPrefrontal cortexLoss incentivesVentral striatumNon-human primate studiesTranslational neuroscienceMemory
2019
A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms
Fleming LM, Javitt DC, Carter CS, Kantrowitz JT, Girgis RR, Kegeles LS, Ragland JD, Maddock RJ, Lesh TA, Tanase C, Robinson J, Potter WZ, Carlson M, Wall MM, Choo TH, Grinband J, Lieberman J, Krystal JH, Corlett PR. A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms. NeuroImage Clinical 2019, 22: 101739. PMID: 30852397, PMCID: PMC6411494, DOI: 10.1016/j.nicl.2019.101739.Peer-Reviewed Original ResearchConceptsDorsolateral prefrontal cortexN-methyl-D-aspartate (NMDA) glutamate receptor antagonistFunctional connectivityKetamine-induced alterationsGlutamate receptor antagonistsAltered brain functionState functional connectivityRsfMRI connectivityRisk patientsMulticenter studyKetamine effectsReceptor antagonistDLPFC connectivityMimic symptomsHealthy individualsKetamine usePositive symptomsCertain biomarkersBrain functionPrefrontal cortexPatientsConnectivity signaturesSeed-based measuresSchizophreniaKetamine
2018
Cerebellar and Prefrontal Cortical Alterations in PTSD: Structural and Functional Evidence
Holmes SE, Scheinost D, DellaGioia N, Davis MT, Matuskey D, Pietrzak RH, Hampson M, Krystal JH, Esterlis I. Cerebellar and Prefrontal Cortical Alterations in PTSD: Structural and Functional Evidence. Chronic Stress 2018, 2: 2470547018786390. PMID: 30035247, PMCID: PMC6054445, DOI: 10.1177/2470547018786390.Peer-Reviewed Original ResearchPosttraumatic stress disorderIntrinsic connectivity distributionMedial prefrontal cortexTensor-based morphometryPTSD groupFunctional connectivityPrefrontal cortexPathophysiology of PTSDGray matter volumeWhole-brain connectivityKey brain regionsMiddle temporal gyrusDorsolateral prefrontal cortexDefault mode networkCentral executive networkFunctional connectivity analysisPFC alterationsCortical alterationsHealthy comparison participantsAltered volumeFunctional alterationsMatter volumeUnmedicated individualsCerebellar involvementBrain regions
2017
Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach
Abdallah CG, Wrocklage KM, Averill CL, Akiki T, Schweinsburg B, Roy A, Martini B, Southwick SM, Krystal JH, Scott JC. Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach. Translational Psychiatry 2017, 7: e1045-e1045. PMID: 28244983, PMCID: PMC5545643, DOI: 10.1038/tp.2017.12.Peer-Reviewed Original ResearchConceptsGlobal brain connectivityPosttraumatic stress disorderAnterior hippocampusStress disorderPTSD severityTraumatic brain injuryMultimodal approachOverall PTSD severityAnxiety-related behaviorDorsolateral prefrontal connectivityDorsolateral prefrontal cortexElevated PTSD symptomsAnatomical dysconnectivityHippocampal dysconnectivityUS veteransBrain injuryHippocampal volumePTSD subgroupBrain biomarkersClinical valueMedication statusPrefrontal connectivitySignificant associationPrefrontal cortexBrain connectivity
2010
Working Memory Overload: Fronto-Limbic Interactions and Effects on Subsequent Working Memory Function
Yun RJ, Krystal JH, Mathalon DH. Working Memory Overload: Fronto-Limbic Interactions and Effects on Subsequent Working Memory Function. Brain Imaging And Behavior 2010, 4: 96-108. PMID: 20503117, PMCID: PMC2854358, DOI: 10.1007/s11682-010-9089-9.Peer-Reviewed Original ResearchConceptsMemory systemAmygdala-prefrontal interactionsSubsequent cognitive performanceWorking Memory FunctionFunctional magnetic resonanceDorsolateral prefrontal cortexMemory taskCognitive functioningNegative affectAmygdala activationCognitive performanceTask performanceCognitive overloadNeural effectsPrefrontal cortexMemory functionPerformance accuracySubsequent functioningSeparate factorsBrain regionsPerformance declineReduced activationFunctioningInverse couplingOverload effect
2006
Cerebral Metabolic Effects of Intravenous Glycine in Healthy Human Subjects
Neumeister A, Carson R, Henry S, Planeta-Wilson B, Binneman B, Maguire RP, Luckenbaugh DA, D'Souza C, Krystal JH, Frost JJ. Cerebral Metabolic Effects of Intravenous Glycine in Healthy Human Subjects. Journal Of Clinical Psychopharmacology 2006, 26: 595-599. PMID: 17110816, DOI: 10.1097/01.jcp.0000245558.14284.aa.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntipsychotic AgentsBehaviorBrainBrain MappingCluster AnalysisCross-Over StudiesDouble-Blind MethodFemaleFluorodeoxyglucose F18GlycineHumansInfusions, IntravenousMagnetic Resonance ImagingMaleNeuropsychological TestsPositron-Emission TomographyRadiopharmaceuticalsReference ValuesSerineConceptsN-methyl-D-aspartate receptor functionReceptor functionRegional cerebral metabolic rateAdministration of glycineCerebral metabolic effectsMagnetic resonance imaging studyPositron emission tomography studyHealthy control subjectsNMDA receptor functionCerebral metabolic rateEmission tomography studiesTest dayHealthy human subjectsResonance imaging studySignificant reductionPositron emission tomographyDorsolateral prefrontal cortexIntravenous glycinePlacebo infusionCerebral metabolismPatient populationControl subjectsGlycine administrationGlycine infusionIntravenous administration
1998
Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI
Belger A, Puce A, Krystal J, Gore J, Goldman‐Rakic P, McCarthy G. Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping 1998, 6: 14-32. PMID: 9673660, PMCID: PMC6873355, DOI: 10.1002/(sici)1097-0193(1998)6:1<14::aid-hbm2>3.0.co;2-o.Peer-Reviewed Original ResearchConceptsMiddle frontal gyrusPerceptual control taskMemory taskIntraparietal sulcusPerceptual domainFrontal gyrusLeft hemisphereExperiment 1Parietal cortexControl taskLeft inferior frontal gyrusRight middle frontal gyrusInferior occipitotemporal cortexNonspatial working memoryCommon brain regionsInferior frontal gyrusVentral visual pathwayDomain-specific activationFunctional magnetic resonanceInferior parietal cortexDorsolateral prefrontal cortexPerceptual processingWorking memoryPerceptual processesMnemonic demands
1997
Positron Emission Tomography Measurement of Cerebral Metabolic Correlates of Tryptophan Depletion—Induced Depressive Relapse
Bremner JD, Innis RB, Salomon RM, Staib LH, Ng CK, Miller HL, Bronen RA, Krystal JH, Duncan J, Rich D, Price LH, Malison R, Dey H, Soufer R, Charney DS. Positron Emission Tomography Measurement of Cerebral Metabolic Correlates of Tryptophan Depletion—Induced Depressive Relapse. JAMA Psychiatry 1997, 54: 364-374. PMID: 9107153, DOI: 10.1001/archpsyc.1997.01830160092012.Peer-Reviewed Original ResearchConceptsCerebral metabolic correlatesDepressive relapseBrain metabolismMajor depressionMiddle frontal gyrusOrbitofrontal cortexTryptophan depletionMetabolic correlatesPositron emission tomography scanningFrontal gyrusRelapse-prone patientsPathogenesis of depressionPositron emission tomography (PET) measurementsSerotonin reuptake inhibitorsSymptoms of patientsPositron emission tomographySingle photon emissionSpecific brain regionsDorsolateral prefrontal cortexReuptake inhibitorsPlasma tryptophanLimbic regionsCaudate nucleusDepressive symptomsPatients