2013
Crystal structure of glycoprotein E2 from bovine viral diarrhea virus
Li Y, Wang J, Kanai R, Modis Y. Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 6805-6810. PMID: 23569276, PMCID: PMC3637714, DOI: 10.1073/pnas.1300524110.Peer-Reviewed Original ResearchConceptsBovine viral diarrhea virus (BVDV) E2C-terminal motifHost cell cytoplasmImportant animal pathogenMembrane fusion mechanismIg-like domainsUnique protein architectureOuter lipid envelopeProtein architectureAnimal pathogensFusion apparatusStructure of E2New foldCellular membranesBovine viral diarrhea virusAromatic residuesViral diarrhea virusCell cytoplasmLipid envelopeDisulfide bondsCell entryDiarrhea virusMajor global health threatCrystal structureFusion mechanism
2007
Crystal structure of Bacillus subtilis CodW, a noncanonical HslV‐like peptidase with an impaired catalytic apparatus
Rho S, Park HH, Kang GB, Im YJ, Kang MS, Lim BK, Seong IS, Seol J, Chung CH, Wang J, Eom SH. Crystal structure of Bacillus subtilis CodW, a noncanonical HslV‐like peptidase with an impaired catalytic apparatus. Proteins Structure Function And Bioinformatics 2007, 71: 1020-1026. PMID: 17979190, DOI: 10.1002/prot.21758.Peer-Reviewed Original Research
2005
Role of the GYVG Pore Motif of HslU ATPase in Protein Unfolding and Translocation for Degradation by HslV Peptidase*
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, Song JJ, Bang O, Seol JH, Wang J, Eom SH, Chung CH. Role of the GYVG Pore Motif of HslU ATPase in Protein Unfolding and Translocation for Degradation by HslV Peptidase*. Journal Of Biological Chemistry 2005, 280: 22892-22898. PMID: 15849200, DOI: 10.1074/jbc.m500035200.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid MotifsAmino Acid SequenceCaseinsChromatographyCross-Linking ReagentsDose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelEndopeptidase ClpEscherichia coliEscherichia coli ProteinsGlycineHydrolysisModels, BiologicalModels, MolecularMolecular Sequence DataMutagenesisMutagenesis, Site-DirectedMutationPeptidesProtein BindingProtein DenaturationProtein FoldingProtein TransportSequence Homology, Amino AcidTemperatureConceptsHslU ATPasePore motifHslVU complexHslV peptidaseCentral poreATP-dependent proteaseProtein unfoldingProteolytic active sitesHslU hexamerProteolytic chamberHslV dodecamerUnfolded proteinsHslV.HslUGly residueTranslocation processAmino acidsDegradation of caseinMotifProteinATP cleavageSame structural featuresATPase activityTranslocationATPaseA specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity
Rodríguez I, Lázaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M. A specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 6407-6412. PMID: 15845765, PMCID: PMC1088371, DOI: 10.1073/pnas.0500597102.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacteriophage T4DNADNA PrimersDNA ReplicationDNA-Directed DNA PolymeraseElectrophoretic Mobility Shift AssayExodeoxyribonucleasesModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein ConformationProtein Structure, TertiarySequence AlignmentTemplates, GeneticConceptsDNA polymerasePhi29 DNA polymeraseProtein-primed DNA polymerasesStrand-displacement capacityMutant DNA polymerasesΦ29 DNA polymeraseRecent crystallographic studiesDNA binding capacityAsp-398Deletion mutantsStructural insightsSpecific insertionProcessivityPolymeraseStrand displacementFunctional roleAmino acidsPalm subdomainSpecific subdomainsBiochemical analysisDNA synthesisCritical roleRegion 2Crystallographic studiesIntrinsic capacity
2004
Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29
Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell 2004, 16: 609-618. PMID: 15546620, DOI: 10.1016/j.molcel.2004.10.019.Peer-Reviewed Original ResearchConceptsDNA polymerasePhi29 DNA polymeraseT7 RNA polymeraseB-family polymerasesSpecific serinePriming proteinPolymerase active sitePhage phi29RNA polymerasePhage genomeSpecificity loopNontemplate strandStrand displacement activityFirst nucleotideHomology modelingSequence insertionHigh processivityProtein primerB familyPolymeraseDuplex DNATemplate DNAProcessivityProteinDNA
2003
Crystal structure of a transcription factor IIIB core interface ternary complex
Juo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB. Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 2003, 422: 534-539. PMID: 12660736, DOI: 10.1038/nature01534.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBinding SitesCrystallography, X-RayDNA, FungalFungal ProteinsGenes, FungalHydrogen BondingMacromolecular SubstancesModels, MolecularMolecular Sequence DataNucleic Acid ConformationPromoter Regions, GeneticProtein Structure, TertiaryProtein SubunitsRNA, Small NuclearSaccharomyces cerevisiae ProteinsStatic ElectricitySubstrate SpecificityTATA-Box Binding ProteinTranscription Factor TFIIIBConceptsTranscription factor IIIBGeneral transcription factor TFIIBDomain IIÅ resolution crystal structureTranscription factor TFIIBOpen initiation complexRegion of TBPTFIIB-related factorAmino-terminal halfCarboxy-terminal halfTernary complexResolution crystal structureRegulated transcriptionPromoter DNASequence similarityInitiation complexRNA polymeraseBase pairsBdp1Brf1Essential rolePolymerasePrimary interfaceCrystal structureResidue 435
2002
Crystal Structures of the Bacillus stearothermophilus CCA-Adding Enzyme and Its Complexes with ATP or CTP
Li F, Xiong Y, Wang J, Cho HD, Tomita K, Weiner AM, Steitz TA. Crystal Structures of the Bacillus stearothermophilus CCA-Adding Enzyme and Its Complexes with ATP or CTP. Cell 2002, 111: 815-824. PMID: 12526808, DOI: 10.1016/s0092-8674(02)01115-7.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid MotifsAmino Acid SequenceCrystallography, X-RayCytidine TriphosphateDimerizationDNA Polymerase betaGeobacillus stearothermophilusModels, MolecularMolecular Sequence DataProtein FoldingProtein Structure, TertiaryRNA NucleotidyltransferasesSequence Homology, Amino AcidConceptsCCA-adding enzymeResolution crystal structureDNA polymerase betaImmature tRNAsNew proteinsBase specificityNucleic acid templateBacillus stearothermophilusPalm domainPolymerase betaIncoming ATPTRNAATPTerminusSubunitsCrystal structureActive siteAdditional structural featuresEnzymeCTPStructural featuresComplexesImportant componentTailDomainCrystal Structure of d-Hydantoinase from Bacillus stearothermophilus: Insight into the Stereochemistry of Enantioselectivity † , ‡
Cheon YH, Kim HS, Han KH, Abendroth J, Niefind K, Schomburg D, Wang J, Kim Y. Crystal Structure of d-Hydantoinase from Bacillus stearothermophilus: Insight into the Stereochemistry of Enantioselectivity † , ‡. Biochemistry 2002, 41: 9410-9417. PMID: 12135362, DOI: 10.1021/bi0201567.Peer-Reviewed Original ResearchConceptsD-hydantoinaseExocyclic substituentsTIM-barrel foldStriking structural similarityApo crystal structureSubstrate recognitionBarrel foldCatalytic chemistryStructural comparisonSide-chain precursorBacillus stearothermophilusCrystal structureAmino acidsStructural similarityDihydroorotaseHydantoinsStereochemistrySubstituentsEnantioselectivityEnzymeStereospecific hydrolysisHydrolysisStructureChemistryHydantoinaseThe C-terminal Tails of HslU ATPase Act as a Molecular Switch for Activation of HslV Peptidase*
Seong IS, Kang MS, Choi MK, Lee JW, Koh OJ, Wang J, Eom SH, Chung CH. The C-terminal Tails of HslU ATPase Act as a Molecular Switch for Activation of HslV Peptidase*. Journal Of Biological Chemistry 2002, 277: 25976-25982. PMID: 12011053, DOI: 10.1074/jbc.m202793200.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAmino Acid SequenceAmino Acid SubstitutionATP-Dependent ProteasesBinding SitesElectrophoresis, Polyacrylamide GelEndopeptidasesEnzyme ActivationHeat-Shock ProteinsModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein ConformationSerine EndopeptidasesStructure-Activity RelationshipConceptsC-terminal tailHslV peptidaseHslVU complexC-terminusHexameric ringMolecular switchATP-dependent proteaseC-terminal 10 residuesAmino acidsProteolytic active sitesDodecamer consistingHslU hexamerHslU ATPaseTail peptideAxial poreATPase actsPolypeptide substratesSubstrate entryS proteasomeHslUCentral poreTerminusHslVPeptidaseCritical role
1997
The Structure of ClpP at 2.3 Å Resolution Suggests a Model for ATP-Dependent Proteolysis
Wang J, Hartling J, Flanagan J. The Structure of ClpP at 2.3 Å Resolution Suggests a Model for ATP-Dependent Proteolysis. Cell 1997, 91: 447-456. PMID: 9390554, DOI: 10.1016/s0092-8674(00)80431-6.Peer-Reviewed Original Research
1996
The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS
Boisvert D, Wang J, Otwinowski Z, Norwich A, Sigler P. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS. Nature Structural & Molecular Biology 1996, 3: 170-177. PMID: 8564544, DOI: 10.1038/nsb0296-170.Peer-Reviewed Original ResearchCrystal Structures of an NH2-Terminal Fragment of T4 DNA Polymerase and Its Complexes with Single-Stranded DNA and with Divalent Metal Ions †
Wang J, Yu P, Lin T, Konigsberg W, Steitz T. Crystal Structures of an NH2-Terminal Fragment of T4 DNA Polymerase and Its Complexes with Single-Stranded DNA and with Divalent Metal Ions †. Biochemistry 1996, 35: 8110-8119. PMID: 8679562, DOI: 10.1021/bi960178r.Peer-Reviewed Original ResearchConceptsT4 DNA polymeraseDNA polymeraseExonuclease domainKlenow fragmentExonuclease active siteActive site regionCrystallographic R-factorTranslational regulationMinimal sequence identityMetal ion cofactorsSequence identityActive siteNH2-terminal fragmentNH2-terminalSite regionDivalent metal ion cofactorCarboxylate residuesPolymeraseIon cofactorScissile phosphateEquivalent positionsResidue formsProteinSeparate domainsCrystal structure
1995
Crystal structure of Thermus aquaticus DNA polymerase
Kim Y, Eom S, Wang J, Lee D, Suh S, Steitz T. Crystal structure of Thermus aquaticus DNA polymerase. Nature 1995, 376: 612-616. PMID: 7637814, DOI: 10.1038/376612a0.Peer-Reviewed Original Research
1994
The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution.
Czworkowski J, Wang J, Steitz T, Moore P. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. The EMBO Journal 1994, 13: 3661-3668. PMID: 8070396, PMCID: PMC395276, DOI: 10.1002/j.1460-2075.1994.tb06675.x.Peer-Reviewed Original ResearchAmino Acid SequenceBinding SitesCrystallography, X-RayGTP Phosphohydrolase-Linked Elongation FactorsGuanosine DiphosphateModels, MolecularMolecular Sequence DataPeptide Chain Elongation, TranslationalPeptide Elongation Factor GPeptide Elongation Factor TuPeptide Elongation FactorsThermus thermophilusStructure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1.
Smerdon S, Jäger J, Wang J, Kohlstaedt L, Chirino A, Friedman J, Rice P, Steitz T. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 3911-3915. PMID: 7513427, PMCID: PMC43692, DOI: 10.1073/pnas.91.9.3911.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntiviral AgentsBinding SitesCrystallography, X-RayDrug Resistance, MicrobialHIV Reverse TranscriptaseHIV-1Models, MolecularMolecular Sequence DataMolecular StructureNevirapineNucleosidesProtein Structure, TertiaryPyridinesReverse Transcriptase InhibitorsRNA-Directed DNA PolymeraseConceptsHuman immunodeficiency virus type 1Immunodeficiency virus type 1Drug resistance mutationsVirus type 1Type 1Reverse transcriptaseHIV-1 reverse transcriptaseNevirapineResistance mutationsNonnucleoside inhibitorsDrugsViable virusSpecific inhibitorInhibitorsClose contactMutationsTranscriptaseSame binding site
1993
Two DNA polymerases: HIV reverse transcriptase and the Klenow fragment of Escherichia coli DNA polymerase I.
Steitz T, Smerdon S, Jäger J, Wang J, Kohlstaedt L, Friedman J, Beese L, Rice P. Two DNA polymerases: HIV reverse transcriptase and the Klenow fragment of Escherichia coli DNA polymerase I. Cold Spring Harbor Symposia On Quantitative Biology 1993, 58: 495-504. PMID: 7525146, DOI: 10.1101/sqb.1993.058.01.056.Peer-Reviewed Original Research