2018
Crystallographic evidence for two‐metal‐ion catalysis in human pol η
Wang J, Smithline ZB. Crystallographic evidence for two‐metal‐ion catalysis in human pol η. Protein Science 2018, 28: 439-447. PMID: 30368948, PMCID: PMC6319759, DOI: 10.1002/pro.3541.Peer-Reviewed Original ResearchConceptsMetal ionsProduct pyrophosphateChemical reactionsTwo-metal-ion catalysisTwo-metal-ion catalytic mechanismThird metal ionPhosphoryl transfer reactionsTransfer reactionsCrystallographic dataCatalytic mechanismCrystal structureCrystallographic evidenceHuman Pol ηMeal ionsIonsHuman polymerase ηCatalysisReactionComplexesSubPyrophosphateBindingProductsDNA polymeraseCrystals
2017
Crystal structure of Pistol, a class of self-cleaving ribozyme
Nguyen LA, Wang J, Steitz TA. Crystal structure of Pistol, a class of self-cleaving ribozyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 1021-1026. PMID: 28096403, PMCID: PMC5293083, DOI: 10.1073/pnas.1611191114.Peer-Reviewed Original Research
2012
Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3′-terminal phosphate and 5′-OH
Englert M, Xia S, Okada C, Nakamura A, Tanavde V, Yao M, Eom SH, Konigsberg WH, Söll D, Wang J. Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3′-terminal phosphate and 5′-OH. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 15235-15240. PMID: 22949672, PMCID: PMC3458315, DOI: 10.1073/pnas.1213795109.Peer-Reviewed Original ResearchConceptsRNA substratesRNA strandRNA phosphate backboneRNA endExtensive mutagenesisSecond RNA substrateKey residuesLigation pathwayBiochemical experimentsOverall ligationRNA ligaseGuanylylationRtcBMechanistic insightsGTP/Critical rolePhosphate backboneGMPActive siteCyclic phosphateDependent reactionDetailed insightStrandsLigaseMutagenesisStructural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue
Xia S, Eom SH, Konigsberg WH, Wang J. Structural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue. Biochemistry 2012, 51: 1476-1485. PMID: 22304682, PMCID: PMC3292180, DOI: 10.1021/bi2016487.Peer-Reviewed Original Research
2004
Crystal structure of a self-splicing group I intron with both exons
Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA. Crystal structure of a self-splicing group I intron with both exons. Nature 2004, 430: 45-50. PMID: 15175762, DOI: 10.1038/nature02642.Peer-Reviewed Original Research
2003
Modifying the oligomeric state of cyclic amidase and its effect on enzymatic catalysis
Yoon J, Oh B, Kim K, Park JE, Wang J, Kim HS, Kim Y. Modifying the oligomeric state of cyclic amidase and its effect on enzymatic catalysis. Biochemical And Biophysical Research Communications 2003, 310: 651-659. PMID: 14521961, DOI: 10.1016/j.bbrc.2003.09.056.Peer-Reviewed Original ResearchConceptsCyclic amidasesD-hydantoinaseCatalytic propertiesHydrophobic interaction domainCatalytic activityEnzymatic catalysisHydrophobic interactionsCyclic ureidesReversible hydrolysisDimeric formHydrophobic patchDimeric interactionsOligomeric stateSpecific activityTetramerKinetic propertiesCatalysisLow specific activityDihydropyrimidinesPropertiesHydantoinsDimersDihydroorotaseHydrolysisInteraction