Featured Publications
scNAT: a deep learning method for integrating paired single-cell RNA and T cell receptor sequencing profiles
Zhu B, Wang Y, Ku L, van Dijk D, Zhang L, Hafler D, Zhao H. scNAT: a deep learning method for integrating paired single-cell RNA and T cell receptor sequencing profiles. Genome Biology 2023, 24: 292. PMID: 38111007, PMCID: PMC10726524, DOI: 10.1186/s13059-023-03129-y.Peer-Reviewed Original Research
2023
Cell-type-specific co-expression inference from single cell RNA-sequencing data
Su C, Xu Z, Shan X, Cai B, Zhao H, Zhang J. Cell-type-specific co-expression inference from single cell RNA-sequencing data. Nature Communications 2023, 14: 4846. PMID: 37563115, PMCID: PMC10415381, DOI: 10.1038/s41467-023-40503-7.Peer-Reviewed Original Research
2017
Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data
Wang Y, Fang H, Yang D, Zhao H, Deng M. Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data. IEEE/ACM Transactions On Computational Biology And Bioinformatics 2017, 16: 1743-1752. PMID: 28858811, DOI: 10.1109/tcbb.2017.2743711.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsCluster AnalysisComputational BiologyGene Regulatory NetworksGenotypeModels, StatisticalPhenotypeYeastsConceptsExponential-family random graph modelsRandom graph modelsGraph modelStatistical network modelsHeterogeneity of networksLarge-scale genetic interaction networksReal social networksERGM parametersSubset of nodesOnline graphStatistical modelData sizeObserved networkEM algorithmNetwork informationGraph nodesMixture problemSocial networksFlexible wayNetwork modelNetwork clustersClassical methodsIncredible setInteraction dataNetwork
2000
Assessing reliability of gene clusters from gene expression data
Zhang K, Zhao H. Assessing reliability of gene clusters from gene expression data. Functional & Integrative Genomics 2000, 1: 156-173. PMID: 11793234, DOI: 10.1007/s101420000019.Peer-Reviewed Original ResearchConceptsStatistical resampling methodsHierarchical clustering methodCluster identification methodNumerical algorithmGene expression dataClustering methodClustering treesResampling methodHierarchical clustering algorithmExpression dataExperiment designClustering algorithmAlgorithmChallenging problemData setsMeasured gene expression levelsEffect of variationData analysisClustersUncertaintyProblemReliability