2020
A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing
Dash BC, Setia O, Gorecka J, Peyvandi H, Duan K, Lopes L, Nie J, Berthiaume F, Dardik A, Hsia HC. A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing. Cells 2020, 9: 966. PMID: 32295218, PMCID: PMC7226960, DOI: 10.3390/cells9040966.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsSecretory functionHuman-induced pluripotent stem cellsParacrine secretionMuscle cellsCollagen fibrillar densitiesSecretory factorsVascular regenerationWound healingTissue-engineered vascular graftsHealingVascular graftsStem cellsPluripotent stem cellsCollagen scaffoldsScaffold propertiesScaffold materialsCellsPromising strategyDisease modelingFibrillar densityRegenerative wound healingCytokinesGraftInduced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing
Gorecka J, Gao X, Fereydooni A, Dash BC, Luo J, Lee SR, Taniguchi R, Hsia HC, Qyang Y, Dardik A. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing. Regenerative Medicine 2020, 15: 1277-1293. PMID: 32228292, PMCID: PMC7304438, DOI: 10.2217/rme-2019-0086.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsMuscle cellsDiabetic wound healingWound healingPro-angiogenic cytokinesMurine AdiposeStem cellsType macrophagesCollagen scaffoldsCultured mediumM2-type macrophagesCellsNumber of totalNew candidatesAngiogenesisNude miceDiabetic woundsPromising new candidateScaffoldsHealingCytokinesExpressionSecreteWoundsAdipose
2019
The potential and limitations of induced pluripotent stem cells to achieve wound healing
Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, Ono S, Liu S, Lee SR, Xu J, Liu J, Taniguchi R, Yastula B, Hsia HC, Qyang Y, Dardik A. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Research & Therapy 2019, 10: 87. PMID: 30867069, PMCID: PMC6416973, DOI: 10.1186/s13287-019-1185-1.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsChronic woundsCell therapyStem cellsDiabetic foot ulcersCell typesWound healingInvasive harvesting techniquesAdult-derived stem cellsNormal skin architecturePluripotent stem cellsLimb ischemiaFoot ulcersLimited cell survivalSafety profileOnly cell typeAnimal modelsHuman studiesPotential treatmentPhysiologic responsesHealthy skinImmune rejectionAdvanced therapiesTranslational potentialUse of iPSCsSystemic factors
2014
Reversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells
Desai VD, Hsia HC, Schwarzbauer JE. Reversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells. PLOS ONE 2014, 9: e86865. PMID: 24466271, PMCID: PMC3900664, DOI: 10.1371/journal.pone.0086865.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueBlotting, WesternCell DifferentiationCell MovementCells, CulturedExtracellular Matrix ProteinsFibroblast Growth Factor 2HumansMesenchymal Stem CellsMyofibroblastsReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSignal TransductionConceptsAdipose-derived mesenchymal stem cellsMesenchymal stem cellsExtracellular matrixERK/MAP kinaseMyofibroblastic phenotypeStem cellsRegulation of tenascinProtein type IActivation of Smad2Abundant extracellular matrixFocal adhesionsGrowth factorKinase downstreamHuman adipose-derived mesenchymal stem cellsCytoskeletal proteinsMAP kinaseStress fibersECM proteinsCell differentiationADSC differentiationDifferentiation processFibroblast-like cellsMyofibroblast differentiationNovel therapeutic strategiesRegenerative medicine