2021
IL-27 signalling promotes adipocyte thermogenesis and energy expenditure
Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021, 600: 314-318. PMID: 34819664, DOI: 10.1038/s41586-021-04127-5.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsBariatric SurgeryDisease Models, AnimalEnergy MetabolismFemaleHumansInsulin ResistanceInterleukin-27MaleMiceObesityP38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaReceptors, InterleukinSignal TransductionThermogenesisUncoupling Protein 1ConceptsIL-27Beige adipose tissueAdipose tissueSerum IL-27Diet-induced obesityBariatric surgeryMetabolic morbidityImmunological factorsInsulin resistanceObesity showTherapeutic administrationMetabolic disordersMouse modelObesityPromising targetEnergy expenditureSignaling promotesThermogenesisBody temperatureMetabolic programsImportant roleTissueCritical roleImmunotherapyMorbidity
2020
A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21
Han MS, Perry RJ, Camporez JP, Scherer PE, Shulman GI, Gao G, Davis RJ. A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes & Development 2020, 35: 133-146. PMID: 33334822, PMCID: PMC7778269, DOI: 10.1101/gad.344556.120.Peer-Reviewed Original ResearchMitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI, Min W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal Of Experimental Medicine 2020, 218: e20201416. PMID: 33315085, PMCID: PMC7927432, DOI: 10.1084/jem.20201416.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose TissueAnimalsDiabetes Mellitus, Type 2Diet, High-FatEnergy MetabolismFatty LiverGene DeletionGene TargetingGluconeogenesisHomeostasisHumansHyperglycemiaInflammationInsulin ResistanceLipogenesisLiverMaleMice, Inbred C57BLMice, KnockoutMitochondriaMitophagyNF-kappa BOxidative StressPhenotypeReactive Oxygen SpeciesSequestosome-1 ProteinSignal TransductionThioredoxinsConceptsHepatic insulin resistanceWhite adipose tissueInsulin resistanceAdipose inflammationType 2 diabetes mellitusLipid metabolic disordersNF-κB inhibitorAdipose-specific deletionWhole-body energy homeostasisAltered fatty acid metabolismFatty acid metabolismT2DM progressionT2DM patientsDiabetes mellitusReactive oxygen species pathwayHepatic steatosisMetabolic disordersNF-κBP62/SQSTM1Adipose tissueHuman adipocytesEnergy homeostasisExcessive mitophagyOxygen species pathwayInflammationRegulation of adipose tissue inflammation by interleukin 6
Han MS, White A, Perry RJ, Camporez JP, Hidalgo J, Shulman GI, Davis RJ. Regulation of adipose tissue inflammation by interleukin 6. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 2751-2760. PMID: 31980524, PMCID: PMC7022151, DOI: 10.1073/pnas.1920004117.Peer-Reviewed Original ResearchConceptsInterleukin-6Adipose tissue inflammationLow-grade inflammationIndividual cell typesMacrophage infiltrationInflammatory cytokinesTissue inflammationGlucose disposalImmune cellsIL6 productionMouse modelChronic stateAdipose tissueMyeloid cellsTissue infiltrationReceptor αConditional expressionCell typesOxidative metabolismOpposite actionsPhysiological regulationEnergy expenditureCanonical modeInflammationSpecific cells
2001
Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance
Yang C, Coker K, Kim J, Mora S, Thurmond D, Davis A, Yang B, Williamson R, Shulman G, Pessin J. Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. Journal Of Clinical Investigation 2001, 107: 1311-1318. PMID: 11375421, PMCID: PMC209300, DOI: 10.1172/jci12274.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose Tissue, BrownAnimalsBiological TransportGlucoseGlucose Clamp TechniqueGlucose Tolerance TestGlucose Transporter Type 4GlycogenGlycolysisHeterozygoteInsulin ResistanceLiverMembrane ProteinsMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalQa-SNARE ProteinsConceptsHeterozygous knockout miceInsulin-stimulated glucose uptakeGlucose uptakeKnockout miceNormal insulin-stimulated glucose uptakeWhole-body glucose uptakeHyperinsulinemic-euglycemic clamp procedureInsulin-stimulated glucose metabolismInsulin-stimulated GLUT4 translocationSkeletal muscleGLUT4 vesicle traffickingImpaired glucose toleranceMuscle insulin resistanceEarly embryonic lethalitySkeletal muscle glucose transportMuscle glucose transportCritical physiological roleGlucose toleranceInsulin resistanceClamp procedureVesicle traffickingSyntaxin 4Embryonic lethalityGlucose metabolismAnimal modelsAdipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
Abel E, Peroni O, Kim J, Kim Y, Boss O, Hadro E, Minnemann T, Shulman G, Kahn B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001, 409: 729-733. PMID: 11217863, DOI: 10.1038/35055575.Peer-Reviewed Original ResearchConceptsInsulin-stimulated glucose uptakeType 2 diabetesInsulin resistanceGlucose uptakeAdipose tissueGLUT4 expressionInsulin-resistant statesDownregulation of GLUT4Glucose intoleranceGlucose transportAdipose massIntracellular storage sitesGlucose homeostasisInsulin actionDiabetesPhosphoinositide-3-OH kinaseImpaired activationSkeletal muscleMuscleMicePlasma membrane4Early defectsLiverMain siteAdipocytes