2019
Transcriptional regulatory model of fibrosis progression in the human lung
McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, Herazo-Maya J, Vukmirovic M, DeIuliis G, Tzouvelekis A, Tanabe N, Chu F, Yan X, Verschakelen J, Homer RJ, Manatakis DV, Zhang J, Ding J, Maes K, De Sadeleer L, Vos R, Neyrinck A, Benos PV, Bar-Joseph Z, Tantin D, Hogg JC, Vanaudenaerde BM, Wuyts WA, Kaminski N. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight 2019, 4 PMID: 31600171, PMCID: PMC6948862, DOI: 10.1172/jci.insight.131597.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisAdvanced fibrosisAlveolar surface densityFibrosis progressionLung fibrosisHuman lungDynamic Regulatory Events MinerExtent of fibrosisIPF lungsPulmonary fibrosisControl lungsIPF tissueB lymphocytesFibrosisLungLinear mixed-effects modelsMixed-effects modelsGene expression changesSystems biology modelsDifferential gene expression analysisGene expression analysisProgressionGene expression networksRNA sequencingBiology modelsRole of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis
Xylourgidis N, Min K, Ahangari F, Yu G, Herazo-Maya JD, Karampitsakos T, Aidinis V, Binzenhöfer L, Bouros D, Bennett AM, Kaminski N, Tzouvelekis A. Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2019, 317: l678-l689. PMID: 31483681, PMCID: PMC6879900, DOI: 10.1152/ajplung.00264.2018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticBleomycinDual-Specificity PhosphatasesFemaleFibroblastsHumansMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein Kinase PhosphatasesPhosphorylationPulmonary FibrosisSignal TransductionTransforming Growth Factor beta1ConceptsPulmonary fibrosisLung fibrosisFibrogenic genesLung fibroblastsM1 macrophage phenotypeIdiopathic pulmonary fibrosisHuman lung fibrosisGrowth factor-β1Levels of hydroxyprolineProtein kinase phosphatase 5IPF lungsReduced fibrosisMuscle fibrosisProfibrogenic effectsTGF-β1Smad7 levelsTherapeutic targetAnimal modelsFactor-β1FibrosisSmad3 phosphorylationEnhanced p38 MAPK activityP38 MAPK activityMyofibroblast differentiationMKP-5 expression
2017
Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function
Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH, Srivastava A, de Castro JPW, DeIuliis G, Ahangari F, Woolard T, Aurelien N, Arrojo e Drigo R, Gan Y, Graham M, Liu X, Homer RJ, Scanlan TS, Mannam P, Lee PJ, Herzog EL, Bianco AC, Kaminski N. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nature Medicine 2017, 24: 39-49. PMID: 29200204, PMCID: PMC5760280, DOI: 10.1038/nm.4447.Peer-Reviewed Original Research
2012
Chitinase 1 Is a Biomarker for and Therapeutic Target in Scleroderma-Associated Interstitial Lung Disease That Augments TGF-β1 Signaling
Lee CG, Herzog EL, Ahangari F, Zhou Y, Gulati M, Lee CM, Peng X, Feghali-Bostwick C, Jimenez SA, Varga J, Elias JA. Chitinase 1 Is a Biomarker for and Therapeutic Target in Scleroderma-Associated Interstitial Lung Disease That Augments TGF-β1 Signaling. The Journal Of Immunology 2012, 189: 2635-2644. PMID: 22826322, PMCID: PMC4336775, DOI: 10.4049/jimmunol.1201115.Peer-Reviewed Original ResearchConceptsInterstitial lung diseaseTGF-β1 signalingPulmonary fibrosisLung diseaseTherapeutic targetScleroderma-Associated Interstitial Lung DiseaseDifferent patient cohortsTGF-β receptor 1Wild-type miceTGF-β1 effectsSSc-ILDLung involvementSSc patientsSystemic sclerosisPulmonary responseLung fibrosisPoor prognosisCHIT1 activityPatient cohortPathogenetic mechanismsReceptor expressionMurine modelingTGF-β1Disease severityPotential biomarkers
2001
Atm knock-in mice harboring an in-frame deletion corresponding to the human ATM 7636del9 common mutation exhibit a variant phenotype.
Spring K, Cross S, Li C, Watters D, Ben-Senior L, Waring P, Ahangari F, Lu SL, Chen P, Misko I, Paterson C, Kay G, Smorodinsky NI, Shiloh Y, Lavin MF. Atm knock-in mice harboring an in-frame deletion corresponding to the human ATM 7636del9 common mutation exhibit a variant phenotype. Cancer Research 2001, 61: 4561-8. PMID: 11389091.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAtaxia TelangiectasiaAtaxia Telangiectasia Mutated ProteinsBase SequenceCell Cycle ProteinsCrosses, GeneticDNADNA-Binding ProteinsFemaleHumansLymphomaMaleMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsMutagenesis, Site-DirectedPhenotypeProtein Serine-Threonine KinasesSequence DeletionThymus NeoplasmsTumor Suppressor ProteinsUp-RegulationConceptsAtaxia telangiectasiaFrame deletionDisorder ataxia-telangiectasiaProtein kinase activityCell cycle checkpointsAmino acid residuesSelectable marker cassetteDetectable ATM proteinMutant proteinsATM proteinCycle checkpointsHomologous recombinationKinase activityAcid residuesMarker cassetteCommon deletion mutationsDeletion mutationsDeletion resultsCre-loxPATM geneThymic lymphomasExtensive apoptosisVariant phenotypesDifferent phenotypesFas ligand