2024
Disruption of mitochondrial unfolded protein response results in telomere shortening in mouse oocytes and somatic cells
Cozzolino M, Ergun Y, Ristori E, Garg A, Imamoglu G, Seli E. Disruption of mitochondrial unfolded protein response results in telomere shortening in mouse oocytes and somatic cells. Aging 2024, 16: 2047-2060. PMID: 38349865, PMCID: PMC10911389, DOI: 10.18632/aging.205543.Peer-Reviewed Original ResearchConceptsCaseinolytic peptidase PMitochondrial unfolded protein responseUnfolded protein responseTelomere integrityProtein responseGermline deletionSomatic cellsSomatic agingSomatic cell divisionDouble-stranded DNA breaksAged miceTelomere shorteningAssociated with cellular senescenceTelomeric regionsProtein homeostasisAccelerated follicular depletionChromosome stabilityCell divisionMtUPRDNA breaksTelomereAging phenotypesCellular senescenceFollicular depletionMouse oocytes
2022
ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL-8/Notch signaling cascade
Ciccone V, Terzuoli E, Ristori E, Filippelli A, Ziche M, Morbidelli L, Donnini S. ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL-8/Notch signaling cascade. International Journal Of Molecular Medicine 2022, 50: 99. PMID: 35656893, PMCID: PMC9186295, DOI: 10.3892/ijmm.2022.5155.Peer-Reviewed Original ResearchConceptsIL-8Endothelial cellsMelanoma cellsTumor cellsALDH1A1 expressionAngiogenic factorsAngiogenic featuresTumor microenvironmentCancer cellsPoor clinical outcomeHigher microvessel densityNumber of cancersPro-angiogenic phenotypeOverexpression of ALDH1A1ALDH1A1 overexpressionClinical outcomesCo-culture systemMicrovessel densityImmunodeficient miceNF-kBProangiogenic factorsMelanoma cancer cellsTumor angiogenesisMelanoma controlStromal cells
2020
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System
Hrelia P, Sita G, Ziche M, Ristori E, Marino A, Cordaro M, Molteni R, Spero V, Malaguti M, Morroni F, Hrelia S. Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. Oxidative Medicine And Cellular Longevity 2020, 2020: 8363245. PMID: 32832006, PMCID: PMC7422410, DOI: 10.1155/2020/8363245.Peer-Reviewed Original ResearchConceptsNeurodegenerative diseasesRisk factorsCellular redox systemsRedox homeostasisMolecular mechanismsMultiple risk factorsPivotal risk factorComplex multifactorial natureDisease mechanismsVascular injuryChronic neurodegenerationPreventive strategiesCommon mechanismOxidative stressMultifactorial natureDiseaseProtective strategiesHuman brainRedox systemProgressionComplex networksMechanismHomeostasisEarly stagesInflammation
2017
MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos
Kasper DM, Moro A, Ristori E, Narayanan A, Hill-Teran G, Fleming E, Moreno-Mateos M, Vejnar CE, Zhang J, Lee D, Gu M, Gerstein M, Giraldez A, Nicoli S. MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos. Developmental Cell 2017, 40: 552-565.e5. PMID: 28350988, PMCID: PMC5404386, DOI: 10.1016/j.devcel.2017.02.021.Peer-Reviewed Original ResearchConceptsDevelopment of vertebratesEmbryonic blood vesselsVertebrate miRNAsMutant embryosVertebrate embryosHigher organismsMiRNAs functionVascular traitsTrait varianceUniform traitTissue developmentEnvironmental perturbationsSignaling pathwaysPhenotypic variabilityEmbryosPhenotypic heterogeneityOrganismsTraitsProper functioningVascular systemVertebratesMutagenesisMiRNAsMicroRNAsPhenotype
2016
In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system
Narayanan A, Hill-Teran G, Moro A, Ristori E, Kasper DM, A. Roden C, Lu J, Nicoli S. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system. Scientific Reports 2016, 6: 32386. PMID: 27572667, PMCID: PMC5004112, DOI: 10.1038/srep32386.Peer-Reviewed Original ResearchConceptsMiRNA familiesSingle guide RNAsMiRNA gene familiesHigher multicellular organismsMultiplexed CRISPR/Entire miRNA familiesMulticellular organismsMiRNA genesGene familySame physiological functionChromosomal locationPhylogenetic ancestorsGenomic sequencesCas9 nucleaseGuide RNACRISPR/Mutagenesis strategyNuclease systemPrimary sequenceVivo mutagenesisPhysiological functionsSecondary structureModel systemMiRNAsMutationsStudying Vascular Angiogenesis and Senescence in Zebrafish Embryos
Ristori E, Donnini S, Ziche M. Studying Vascular Angiogenesis and Senescence in Zebrafish Embryos. Methods In Molecular Biology 2016, 1430: 387-400. PMID: 27172969, DOI: 10.1007/978-1-4939-3628-1_27.Peer-Reviewed Original ResearchConceptsZebrafish embryosFluorescent transgenic linesCyclin-dependent kinase inhibitor p21 expressionVessel formationTransgenic linesSenescence defectsZebrafish modelPhosphatase activityAlkaline phosphatase activityEmbryosSenescenceExcellent animal modelExcellent disease modelZebrafishP21 expressionBrain degenerative changesNeurodegenerative diseasesVascular angiogenesisVascular senescenceΒ-galactosidaseOptical translucencyPeptide treatmentAmyloid β-peptideAngiogenesisDisease modelsIsolation and Culture of Adult Zebrafish Brain-derived Neurospheres.
Lopez-Ramirez MA, Calvo CF, Ristori E, Thomas JL, Nicoli S. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres. Journal Of Visualized Experiments 2016, 53617. PMID: 26967835, PMCID: PMC4828210, DOI: 10.3791/53617.Peer-Reviewed Original ResearchConceptsAdult zebrafish brainStem/progenitor cellsZebrafish brainMolecular mechanismsRelevant model organismZebrafish adult brainProgenitor cellsSingle-cell dissociationSpecific signaling pathwaysAdult stem/progenitor cellsStem/progenitor cell proliferationNeural stem/progenitor cell proliferationProgenitor cell proliferationNeural stem/progenitor cellsModel organismsGene expressionCell dissociationSignaling pathwaysMultipotent neural stem/progenitor cellsNeurosphere assayAdult neurogenesisCell proliferationZebrafishBrain regenerationAdult brain
2015
Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons
Fortuna V, Pardanaud L, Brunet I, Ola R, Ristori E, Santoro MM, Nicoli S, Eichmann A. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons. Cell Reports 2015, 11: 1786-1796. PMID: 26074079, DOI: 10.1016/j.celrep.2015.05.028.Peer-Reviewed Original ResearchConceptsPlatelet-derived growth factor receptorNA differentiationNoradrenergic differentiationMural cell recruitmentDorsal aortaSympathetic neuronsCloche mutantsCell recruitmentZebrafish embryosEmbryonic sympathetic neuronsGrowth factor receptorVascular mural cellsSmooth muscle targetsPostganglionic sympathetic neuronsSympathetic nervous systemMural cellsSympathetic precursorsFactor receptorVascular maturationDifferentiationMuscle toneMuscle targetsNeurovascular interactionsHeart rateNervous systemA Dicer-miR-107 Interaction Regulates Biogenesis of Specific miRNAs Crucial for Neurogenesis
Ristori E, Lopez-Ramirez MA, Narayanan A, Hill-Teran G, Moro A, Calvo CF, Thomas JL, Nicoli S. A Dicer-miR-107 Interaction Regulates Biogenesis of Specific miRNAs Crucial for Neurogenesis. Developmental Cell 2015, 32: 546-560. PMID: 25662174, PMCID: PMC8950125, DOI: 10.1016/j.devcel.2014.12.013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell DifferentiationCell ProliferationImmunoenzyme TechniquesIn Situ HybridizationMicroRNAsNeurogenesisNeuronsReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRhombencephalonRibonuclease IIIRNA, MessengerTumor Cells, CulturedZebrafishZebrafish ProteinsConceptsSpecific miRNAsDicer levelsBiogenesis of microRNAsNeuronal cellsDicer expression levelsExpression levelsDicer resultsMiRNA biogenesisMiR-107 functionsBiogenesisEctopic accumulationSubstrate selectivityPostmitotic neuronsMiR-107MiR-9MiRNAsHomeostatic levelsPrecise accumulationNeurogenesisDicerCellsAccumulationMicroRNAsRecent reportsProgenitors
2014
miRNAs Expression Profile in Zebrafish Developing Vessels
Ristori E, Nicoli S. miRNAs Expression Profile in Zebrafish Developing Vessels. Methods In Molecular Biology 2014, 1214: 129-150. PMID: 25468601, DOI: 10.1007/978-1-4939-1462-3_7.Peer-Reviewed Original ResearchConceptsExpression profilesZebrafish embryonic developmentSmall RNA librariesSmall noncoding RNAsDeep sequencing strategyQuantification of miRNAsPrimary endothelial cellsMiRNAs expression profilesRNA librariesNovel miRNAEmbryonic developmentNoncoding RNAsEndothelial cellsRNA strategySequence variantsSequencing strategyMiRNAsRNACellsMiRNAEarly stagesFACSAngiogenesisVariants
2012
MHC genotype predicts mate choice in the ring‐necked pheasant Phasianus colchicus
Baratti M, Dessì‐fulgheri F, Ambrosini R, Bonisoli‐alquati A, Caprioli M, Goti E, Matteo A, Monnanni R, Ragionieri L, Ristori E, Romano M, Rubolini D, Scialpi A, Saino N. MHC genotype predicts mate choice in the ring‐necked pheasant Phasianus colchicus. Journal Of Evolutionary Biology 2012, 25: 1531-1542. PMID: 22591334, DOI: 10.1111/j.1420-9101.2012.02534.x.Peer-Reviewed Original ResearchConceptsMate choiceRing-necked pheasantsMHC genotypeRing-necked pheasants Phasianus colchicusExpression of ornamentsMajor histocompatibility complex (MHC) genesPheasants Phasianus colchicusMale dominance rankMHC dissimilarityOrnament expressionVertebrate speciesGene poolMating preferencesReproductive successHigh heterozygosityComplex genesPhasianus colchicusMHC heterozygosityAdult phenotypeMaternal effectsMHC lociFemale pheasantsEarly ontogenyMatingDifferent MHC genotypes