2023
Nova proteins direct synaptic integration of somatostatin interneurons through activity-dependent alternative splicing
Ibrahim L, Wamsley B, Alghamdi N, Yusuf N, Sevier E, Hairston A, Sherer M, Jaglin X, Xu Q, Guo L, Jamayran A, Favuzzi E, Yuan Y, Dimidschstein J, Darnell R, Fishell G. Nova proteins direct synaptic integration of somatostatin interneurons through activity-dependent alternative splicing. ELife 2023, 12: e86842. PMID: 37347149, PMCID: PMC10287156, DOI: 10.7554/elife.86842.Peer-Reviewed Original ResearchConceptsAlternative splicingSomatostatin interneuronsFamily of RNA-binding proteinsCortical circuit formationRNA-binding proteinsFamily of proteinsActivity-dependent alternative splicingNova familyMouse somatosensory cortexNOVA proteinsBear populationInhibitory cellsAxon formationSplicingSynaptic integrationGene expressionInterneuronsCircuit formationCortical circuitryActivity-dependentSomatosensory cortexSynapse formationBrain developmentSynaptic functionProtein
2021
GABA-receptive microglia selectively sculpt developing inhibitory circuits
Favuzzi E, Huang S, Saldi G, Binan L, Ibrahim L, Fernández-Otero M, Cao Y, Zeine A, Sefah A, Zheng K, Xu Q, Khlestova E, Farhi S, Bonneau R, Datta S, Stevens B, Fishell G. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 2021, 184: 4048-4063.e32. PMID: 34233165, PMCID: PMC9122259, DOI: 10.1016/j.cell.2021.06.018.Peer-Reviewed Original ResearchConceptsInhibitory cortical synapsesBrain wiringResident immune cellsMouse postnatal developmentBehavioral abnormalitiesImmune cellsInhibitory circuitsSynaptic refinementGlial cell typesExcitatory synapsesCortical synapsesPostnatal developmentMicrogliaSynapse typesInhibitory connectionsCell typesBrainRemodeling programSynapsesAbnormalitiesGABA
2020
Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans
Vormstein-Schneider D, Lin J, Pelkey K, Chittajallu R, Guo B, Arias-Garcia M, Allaway K, Sakopoulos S, Schneider G, Stevenson O, Vergara J, Sharma J, Zhang Q, Franken T, Smith J, Ibrahim L, Mastro K, Sabri E, Huang S, Favuzzi E, Burbridge T, Xu Q, Guo L, Vogel I, Sanchez V, Saldi G, Gorissen B, Yuan X, Zaghloul K, Devinsky O, Sabatini B, Batista-Brito R, Reynolds J, Feng G, Fu Z, McBain C, Fishell G, Dimidschstein J. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience 2020, 23: 1629-1636. PMID: 32807948, PMCID: PMC8015416, DOI: 10.1038/s41593-020-0692-9.Peer-Reviewed Original ResearchConceptsRecombinant adeno-associated virus vectorAdeno-associated virus vectorVasoactive intestinal peptide-expressing interneuronsClasses of neuronsGene regulatory elementsGene SCN1AViral toolsNeuronal subtypesCerebral cortexViral manipulationTherapeutic interventionsVertebrate speciesNon-human primatesVirus vectorsGene expressionInterneuronsBrain regionsCircuit manipulationsExquisite specificityParvalbuminRegulatory landscapeNeuronsSCN1ASubtypesMice
2019
Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits
Favuzzi E, Deogracias R, Marques-Smith A, Maeso P, Jezequel J, Exposito-Alonso D, Balia M, Kroon T, Hinojosa A, F Maraver E, Rico B. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science 2019, 363: 413-417. PMID: 30679375, DOI: 10.1126/science.aau8977.Peer-Reviewed Original ResearchConceptsCortical inhibitory circuitsInhibitory circuitsClasses of GABAergic interneuronsInvestigate transcriptional dynamicsClasses of interneuronsConnectivity patternsAxon initial segmentGABAergic interneuronsMammalian cerebral cortexTranscriptional dynamicsCortical interneuronsPyramidal cellsSynapse specificityPostnatal developmentInterneuron diversityInterneuronsCerebral cortexMolecular mechanismsConnectivity motifsSynaptic moleculesBrain functionMolecular programsNeuronal connectivityInformation processingFunctional networks
2018
Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons
Wamsley B, Jaglin X, Favuzzi E, Quattrocolo G, Nigro M, Yusuf N, Khodadadi-Jamayran A, Rudy B, Fishell G. Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron 2018, 100: 846-859.e7. PMID: 30318414, PMCID: PMC6541232, DOI: 10.1016/j.neuron.2018.09.026.Peer-Reviewed Original Research
2017
Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican
Favuzzi E, Marques-Smith A, Deogracias R, Winterflood C, Sánchez-Aguilera A, Mantoan L, Maeso P, Fernandes C, Ewers H, Rico B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron 2017, 95: 639-655.e10. PMID: 28712654, DOI: 10.1016/j.neuron.2017.06.028.Peer-Reviewed Original ResearchConceptsPV+ cellsPerineuronal netsInterneuron plasticityInterneuron functionActivity-dependent neuronal plasticityParvalbumin interneuron functionPNN proteinAMPA receptorsPotassium channelsNeuronal plasticityNervous systemBrevican levelsInterneuronsMolecular programsSynaptic formCellular modificationsMolecular mechanismsCellsBrevican
2014
Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis
Annibali D, Whitfield J, Favuzzi E, Jauset T, Serrano E, Cuartas I, Redondo-Campos S, Folch G, Gonzàlez-Juncà A, Sodir N, Massó-Vallés D, Beaulieu M, Swigart L, Mc Gee M, Somma M, Nasi S, Seoane J, Evan G, Soucek L. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nature Communications 2014, 5: 4632. PMID: 25130259, PMCID: PMC4143920, DOI: 10.1038/ncomms5632.Peer-Reviewed Original ResearchConceptsMYC inhibitionElevated MYC levelsPatient-derived tumorsAdult central nervous systemHuman glioblastoma cell linesCentral nervous systemFormation of multinucleated cellsPrimary tumorGlioblastoma cell linesStandard therapyOrthotopic xenograftsMYC levelsMouse modelIncreased apoptosisCancer therapyHuman tumorsMitotic catastropheTherapeutic strategiesHuman gliomasMYCTumorNervous systemInvasive astrocytomasGliomaCell lines
2011
The Action Mechanism of the Myc Inhibitor Termed Omomyc May Give Clues on How to Target Myc for Cancer Therapy
Savino M, Annibali D, Carucci N, Favuzzi E, Cole M, Evan G, Soucek L, Nasi S. The Action Mechanism of the Myc Inhibitor Termed Omomyc May Give Clues on How to Target Myc for Cancer Therapy. PLOS ONE 2011, 6: e22284. PMID: 21811581, PMCID: PMC3141027, DOI: 10.1371/journal.pone.0022284.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ProliferationCell SurvivalCells, CulturedDown-RegulationEpigenesis, GeneticFibroblastsHumansIntracellular SpaceMiceMolecular Targeted TherapyNeoplasmsPeptide FragmentsPromoter Regions, GeneticProtein BindingProtein TransportProteinsProto-Oncogene Proteins c-mycRatsRepressor ProteinsSerumTranscription, GeneticTranscriptional ActivationUp-RegulationConceptsMiz-1E-boxTargeting MYCProtein interactionsBinding to E-boxesMyc protein interactionsPromoter E-boxTransactivation of target genesBinding to promotersH3 lysine 9MYC interactomeHLH proteinsRepressed genesCancer therapyLysine 9Gene productsRNA interferenceCancer model in vivoOmomycEpigenetic changesTarget genesGene knockoutDecreased acetylationMYCN-myc