1996
Surface point mutations that significantly alter the structure and stability of a protein's denatured state
Smith C, Bu Z, Engelman D, Regan L, Anderson K, Sturtevant J. Surface point mutations that significantly alter the structure and stability of a protein's denatured state. Protein Science 1996, 5: 2009-2019. PMID: 8897601, PMCID: PMC2143264, DOI: 10.1002/pro.5560051007.Peer-Reviewed Original ResearchConceptsPoint mutationsDenatured stateStopped-flow fluorescenceDenaturant concentrationSolvent-exposed sitesStreptococcal protein GMutantsG mutantTertiary structureGuHCl denaturationEquilibrium intermediatesPosition 53B1 domainProteinCircular dichroismMutationsProtein GGuanidine hydrochlorideSmall-angle X-ray scatteringStructural implicationsX-ray scatteringFluorescenceThrRadius of gyrationDenaturants
1992
Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin.
Kahn T, Sturtevant J, Engelman D. Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. Biochemistry 1992, 31: 8829-39. PMID: 1390670, DOI: 10.1021/bi00152a020.Peer-Reviewed Original ResearchBacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.
Kahn T, Engelman D. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 1992, 31: 6144-51. PMID: 1627558, DOI: 10.1021/bi00141a027.Peer-Reviewed Original ResearchConceptsStable transmembrane helixSecond helical segmentX-ray diffractionCovalent connectionAbsorption spectroscopyTwo-dimensional crystalsIndependent folding domainsBacteriorhodopsinHelical segmentsNative structureHelixSpectroscopyPeptidesDiffractionTransmembrane helicesMoleculesCrystalsFragmentsMaterialsStructure
1991
Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation.
Kataoka M, Head J, Persechini A, Kretsinger R, Engelman D. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry 1991, 30: 1188-92. PMID: 1991098, DOI: 10.1021/bi00219a004.Peer-Reviewed Original ResearchConceptsLinker regionCentral helixCalcium-dependent conformational changeWild-type proteinCentral linker regionSmall-angle X-rayAlpha-helical conformationGlu-84Calmodulin mutantsMutant formsGlu-83Wild typeMutantsNative proteinConformational changesCalmodulinProteinSer-81DeletionPresence of Ca2Binding of melittinSignificant size changesGlobular conformationRadius of gyrationHelix
1989
Melittin binding causes a large calcium-dependent conformational change in calmodulin.
Kataoka M, Head J, Seaton B, Engelman D. Melittin binding causes a large calcium-dependent conformational change in calmodulin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 6944-6948. PMID: 2780551, PMCID: PMC297967, DOI: 10.1073/pnas.86.18.6944.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBee VenomsBrainCalciumCalmodulinCattleKineticsMagnesiumMelittenProtein BindingProtein ConformationX-Ray DiffractionConceptsConformational changesCalcium-dependent conformational changeDependent conformational changesCellular functionsTarget proteinsMelittin bindsCalmodulin functionCalmodulinSolution structureCalmodulin-melittin complexSmall-angle X-ray scatteringConformation changeAbsence of calciumCompetitive inhibitorOverall structureMelittin bindingTarget peptideMelittinPresence of calciumGlobular shapeCa2PeptidesX-ray scatteringProteinBindsLimitations of the lipid state hypothesis for atherosclerosis are revealed by X-ray diffraction measurements
Burks C, Hong S, Ho M, Engelman D. Limitations of the lipid state hypothesis for atherosclerosis are revealed by X-ray diffraction measurements. Atherosclerosis 1989, 77: 43-51. PMID: 2719761, DOI: 10.1016/0021-9150(89)90008-7.Peer-Reviewed Original Research
1987
Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process
Popot J, Gerchman S, Engelman D. Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process. Journal Of Molecular Biology 1987, 198: 655-676. PMID: 3430624, DOI: 10.1016/0022-2836(87)90208-7.Peer-Reviewed Original ResearchConceptsLipid vesiclesAbsence of retinalAlpha-helical structureStable transmembrane helixPurple membrane latticeTransmembrane helicesSmall lipid vesiclesCircular dichroism spectraMembrane proteinsMixture of monomersFree energy minimumDodecyl sulfate solutionVesicle fusionRenatured moleculesSame absorption spectrumCorrect refoldingMajor rearrangementsStructure of bacteriorhodopsinTertiary structureMembrane latticeAbsorption spectroscopyNeutron crystallographyFolding mechanismPartial dehydration processLipid bilayers
1986
Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments.
Popot J, Trewhella J, Engelman D. Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments. The EMBO Journal 1986, 5: 3039-3044. PMID: 3792305, PMCID: PMC1167258, DOI: 10.1002/j.1460-2075.1986.tb04603.x.Peer-Reviewed Original ResearchMeSH KeywordsBacteriorhodopsinsChymotrypsinHalobacteriumNeutron Activation AnalysisPeptide FragmentsProtein ConformationX-Ray Diffraction
1985
Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis
Dumont M, Trewhella J, Engelman D, Richards F. Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis. The Journal Of Membrane Biology 1985, 88: 233-247. PMID: 3913776, DOI: 10.1007/bf01871088.Peer-Reviewed Original ResearchConceptsMolecular weight distributionFragments of bacteriorhodopsinVisible absorption spectraX-ray diffractionX-ray diffraction patternsDiffraction patternsAqueous mediaNative purple membraneUrea-polyacrylamide gel electrophoresisWeight distributionSmall soluble peptidesAbsorption spectraHydrophobic segmentsBacteriorhodopsin sequenceAmino acid analysisHigh-pressure liquid chromotographyPolyacrylamide gel electrophoresisDigestion conditionsPurple membraneOptical absorptionSoluble peptidesBacteriorhodopsinMembrane-embedded regionsLiquid chromotographyProducts of digestion
1983
Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles
Lewis B, Engelman D. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. Journal Of Molecular Biology 1983, 166: 211-217. PMID: 6854644, DOI: 10.1016/s0022-2836(83)80007-2.Peer-Reviewed Original Research
1980
Path of the polypeptide in bacteriorhodopsin.
Engelman D, Henderson R, McLachlan A, Wallace B. Path of the polypeptide in bacteriorhodopsin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 2023-2027. PMID: 6929535, PMCID: PMC348643, DOI: 10.1073/pnas.77.4.2023.Peer-Reviewed Original Research
1979
Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase.
Pickover C, McKay D, Engelman D, Steitz T. Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase. Journal Of Biological Chemistry 1979, 254: 11323-11329. PMID: 387770, DOI: 10.1016/s0021-9258(19)86488-8.Peer-Reviewed Original ResearchConceptsYeast phosphoglycerate kinasePhosphoglycerate kinaseConformational changesTernary complexSubstrate bindingHinge motionKinaseSubstrate MgATPCleft closureSmall-angle X-raySeparate bindingRadius of gyrationAngle X-rayMgATPBindingApparent similarityComplexesCleftEnzymeObserved changesHexokinaseGyration decreasesDomainSimilaritySmall angle X-ray scattering of dimeric yeast hexokinase in solution.
McDonald R, Engelman D, Steitz T. Small angle X-ray scattering of dimeric yeast hexokinase in solution. Journal Of Biological Chemistry 1979, 254: 2942-2943. PMID: 372185, DOI: 10.1016/s0021-9258(17)30165-5.Peer-Reviewed Original ResearchMeSH KeywordsHexokinaseMacromolecular SubstancesProtein ConformationSaccharomyces cerevisiaeX-Ray Diffraction
1978
X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit
LAUGHREA M, ENGELMAN D, MOORE P. X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit. The FEBS Journal 1978, 85: 529-534. PMID: 348475, DOI: 10.1111/j.1432-1033.1978.tb12268.x.Peer-Reviewed Original Research
1976
The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawii
Wallace B, Richards F, Engelman D. The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawii. Journal Of Molecular Biology 1976, 107: 255-269. PMID: 1003469, DOI: 10.1016/s0022-2836(76)80004-6.Peer-Reviewed Original ResearchMolecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta.
Engelman D, Hillman G. Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta. Journal Of Clinical Investigation 1976, 58: 997-1007. PMID: 965500, PMCID: PMC333264, DOI: 10.1172/jci108554.Peer-Reviewed Original Research
1974
The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of Microcrystals
Steitz T, Richmond T, Wise D, Engelman D. The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of Microcrystals. Proceedings Of The National Academy Of Sciences Of The United States Of America 1974, 71: 593-597. PMID: 4595565, PMCID: PMC388057, DOI: 10.1073/pnas.71.3.593.Peer-Reviewed Original Research
1972
The Planar Organization of Lecithin-Cholesterol Bilayers
Engelman D, Rothman J. The Planar Organization of Lecithin-Cholesterol Bilayers. Journal Of Biological Chemistry 1972, 247: 3694-3697. PMID: 5030638, DOI: 10.1016/s0021-9258(19)45196-x.Peer-Reviewed Original ResearchThe molecular structure of the membrane of Acholeplasma laidlawii
Engelman D. The molecular structure of the membrane of Acholeplasma laidlawii. Chemistry And Physics Of Lipids 1972, 8: 298-302. PMID: 5041943, DOI: 10.1016/0009-3084(72)90058-8.Peer-Reviewed Original ResearchMeSH KeywordsAcholeplasma laidlawiiBacterial ProteinsCell MembraneCulture MediaFatty AcidsLipid MetabolismMycoplasmaTemperatureX-Ray Diffraction
1971
Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques
Metcalfe J, Metcalfe S, Engelman D. Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques. Biochimica Et Biophysica Acta 1971, 241: 412-421. PMID: 5159791, DOI: 10.1016/0005-2736(71)90041-1.Peer-Reviewed Original ResearchMeSH KeywordsAcetoneAcholeplasma laidlawiiAlcoholsBacterial ProteinsBenzyl CompoundsBinding SitesCell MembraneCentrifugation, Density GradientChemical PrecipitationDetergentsDeuteriumDialysisErythrocytesLipidsMacromolecular SubstancesMagnetic Resonance SpectroscopyMicroscopy, ElectronMycoplasmaSulfatesUltracentrifugationX-Ray DiffractionConceptsRelaxation measurementsMagnetic relaxation measurementsNuclear magnetic relaxation measurementsNuclear magnetic resonance techniquesNative membranesProbe experimentsX-ray diffraction patternsX-ray diffractionMagnetic resonance techniquesSodium dodecyl sulfateLipid bilayer structureProbe techniqueProbe moleculesBenzyl alcoholResonance techniquesDiffraction patternsBilayer regionsDodecyl sulfateBilayer structureElectron microscopyMembrane systemStructural comparisonMeasurementsMembraneDiffraction