2012
Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment
Ling J, Peterson KM, Simonović I, Cho C, Söll D, Simonović M. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3281-3286. PMID: 22343532, PMCID: PMC3295322, DOI: 10.1073/pnas.1200109109.Peer-Reviewed Original ResearchMeSH KeywordsAeropyrumAmino Acid SequenceAnticodonCatalytic DomainCodonCrystallography, X-RayEscherichia coliEvolution, MolecularLeucineMitochondriaModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, TertiaryRNA EditingRNA, Transfer, Amino AcylSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSpecies SpecificityStaphylococcus aureusSubstrate SpecificityThreonineThreonine-tRNA LigaseConceptsThreonyl-tRNA synthetaseAnticodon loopAnticodon sequenceEscherichia coli ThrRSSet of tRNAsDistinct recognition mechanismsAnticodon-binding domainAminoacyl-tRNA synthetasesCUN codonsDetailed structural comparisonCodon reassignmentYeast mitochondriaGenetic codeTRNA isoacceptorsSaccharomyces cerevisiaeIsoacceptor tRNAsEditing domainTRNAMST1Anticodon tripletStructural comparisonNatural tRNAAmino acidsDistinct mechanismsRecognition mechanism
2011
Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase
O’Donoghue P, Sheppard K, Nureki O, Söll D. Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 20485-20490. PMID: 22158897, PMCID: PMC3251134, DOI: 10.1073/pnas.1117294108.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesBase SequenceCodonEscherichia coliEvolution, MolecularGenetic EngineeringKineticsMethanobacteriaceaeModels, MolecularMolecular ConformationMolecular Sequence DataNucleic Acid ConformationPhylogenyProtein Structure, SecondarySequence Homology, Amino AcidConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesGenetic code engineeringAmino acidsDomains of lifeMost aminoacyl-tRNA synthetasesGlutamyl-tRNA synthetaseCanonical amino acidsBacterial GlnRSTRNA specificityTRNA pairsParticular codonsEvolutionary precursorBiochemical characterizationStem loopGlnRAdditional codonsCAA codonCodonProtein synthesisCAG codonEscherichia coliSpecific enzymesCatalytic preferenceSynthetase
2010
Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation
Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D, Ishitani R. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Research 2010, 38: 7286-7297. PMID: 20601684, PMCID: PMC2978374, DOI: 10.1093/nar/gkq605.Peer-Reviewed Original ResearchConceptsNon-discriminating glutamyl-tRNA synthetaseGlutamyl-tRNA synthetaseND-GluRSEscherichia coli GlnRSFormation of GlnCognate tRNA moleculesGlutaminyl-tRNA synthetaseAnticodon-binding domainEvolutionary predecessorPhylogenetic analysisGenetic codeMolecular basisTRNA moleculesRecognition pocketGlnRGenetic encodingAmino acidsSpecific ligationStructural determinantsKey eventsSynthetaseGluPromiscuous recognitionGluRGln
2009
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura S, Sherrer RL, Steitz TA, Söll D, Simonović M. The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation. Science 2009, 325: 321-325. PMID: 19608919, PMCID: PMC2857584, DOI: 10.1126/science.1173755.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBiocatalysisCatalytic DomainCrystallography, X-RayHumansHydrogen BondingModels, MolecularMolecular Sequence DataNucleic Acid ConformationPhosphatesPhosphoserineProtein ConformationProtein MultimerizationProtein Structure, SecondaryRNA, Transfer, Amino Acid-SpecificRNA, Transfer, Amino AcylSelenocysteineConceptsTransfer RNASelenocysteine formationSelenocysteinyl-tRNA synthaseCognate transfer RNAEnzyme active siteTRNA bindingActive siteConformational changesEnzyme assaysAmino acidsFree phosphoserinePhosphoserineSepSecSFinal stepSelenocysteineBiosynthesisComplexesRNAMechanismBindsCrystal structureSynthaseBindingFormationAssaysA Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea
Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Söll D. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea. Science 2009, 324: 657-659. PMID: 19407206, PMCID: PMC2857566, DOI: 10.1126/science.1170123.Peer-Reviewed Original ResearchConceptsTransfer RNAArchaeon Methanopyrus kandleriTertiary coreCytidine deaminase domainsTRNA genesTransfer RNAsTHUMP domainProper foldingU editingC deaminationMethanopyrus kandleriTRNA tertiary structureDeaminase domainTertiary structureTRNA tertiary corePosition 8Cytidine deaminaseUnique familyArchaeaRNAsGenesRNAFoldingDomainCrystal structure
2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairsCharacterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation
Sherrer RL, O’Donoghue P, Söll D. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation. Nucleic Acids Research 2008, 36: 1247-1259. PMID: 18174226, PMCID: PMC2275090, DOI: 10.1093/nar/gkm1134.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAdenosine TriphosphateAmino Acid SequenceArchaeal ProteinsBinding SitesEvolution, MolecularKineticsMethanococcalesModels, MolecularMutationPhosphotransferasesPhylogenyProtein Structure, TertiaryRNA, Transfer, Amino AcylSequence AlignmentSingle-Strand Specific DNA and RNA EndonucleasesSubstrate SpecificityConceptsATPase active sitePhosphate-binding loopInduced fit mechanismRxxxR motifEvolutionary historyWalker BKinase familyPhylogenetic analysisSep-tRNARelated kinasesPSTKBiochemical characterizationSynthase convertsFit mechanismKinaseATPase activityPlasmodium speciesMotifActive siteSerHigh affinityDecreased activityArchaeaSepSecSSer18
2006
Structure of the unusual seryl‐tRNA synthetase reveals a distinct zinc‐dependent mode of substrate recognition
Bilokapic S, Maier T, Ahel D, Gruic‐Sovulj I, Söll D, Weygand‐Durasevic I, Ban N. Structure of the unusual seryl‐tRNA synthetase reveals a distinct zinc‐dependent mode of substrate recognition. The EMBO Journal 2006, 25: 2498-2509. PMID: 16675947, PMCID: PMC1478180, DOI: 10.1038/sj.emboj.7601129.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnimalsArchaeal ProteinsBinding SitesCrystallography, X-RayDimerizationEnzyme ActivationHumansMethanosarcina barkeriModels, MolecularMolecular Sequence DataMolecular StructureProtein Structure, QuaternarySequence AlignmentSequence Homology, Amino AcidSerineSerine-tRNA LigaseSubstrate SpecificityThreonineConceptsSeryl-tRNA synthetaseTRNA-binding domainMinimal sequence similarityResolution crystal structureAmino acid substratesActive site zinc ionSequence similaritySubstrate recognitionSerRSsSerine substrateMotif 1Methanogenic archaeaMutational analysisProtein ligandsEnzymatic activityArchaeaAminoacyl-tRNA synthetase systemsDistinct mechanismsAbsolute requirementRecognition mechanismSynthetase systemSynthetaseIon ligandsZinc ionsEucaryotes
2004
Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem?
Ambrogelly A, Kamtekar S, Sauerwald A, Ruan B, Tumbula-Hansen D, Kennedy D, Ahel I, Söll D. Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem? Cellular And Molecular Life Sciences 2004, 61: 2437-2445. PMID: 15526152, DOI: 10.1007/s00018-004-4194-9.Peer-Reviewed Original ResearchConceptsMethanogenic archaeaCysteine biosynthesisCellular translation machineryAminoacyl-tRNA synthesisCanonical cysteinyl-tRNA synthetaseAminoacyl-tRNA synthetasesCysteinyl-tRNA synthetaseRecognizable genesTranslation machineryGenome sequenceArchaeaBiosynthesisEssential componentSynthetasesTRNARibosomesGenesMachineryOrganismsSynthetasePossible linkSequenceFormation
2000
A Mutant Escherichia coli Tyrosyl-tRNA Synthetase Utilizes the Unnatural Amino Acid Azatyrosine More Efficiently than Tyrosine*
Hamano-Takaku F, Iwama T, Saito-Yano S, Takaku K, Monden Y, Kitabatake M, Söll D, Nishimura S. A Mutant Escherichia coli Tyrosyl-tRNA Synthetase Utilizes the Unnatural Amino Acid Azatyrosine More Efficiently than Tyrosine*. Journal Of Biological Chemistry 2000, 275: 40324-40328. PMID: 11006270, DOI: 10.1074/jbc.m003696200.Peer-Reviewed Original ResearchConceptsUnnatural amino acidsTyrosyl-tRNA synthetaseEscherichia coli tyrosyl-tRNA synthetasePosition 130Amino acidsVivo protein biosynthesisE. coli cellsAminoacyl-tRNA formationSingle point mutationTyrRS mutantsCellular proteinsProtein biosynthesisTYR geneMutant enzymesPlasmid libraryReplacement of phenylalanineColi cellsImmense potentialNormal phenotypeEfficient productionPoint mutationsTyrRSProteinPolymerase chain reaction techniqueSynthetaseAMINOACYL-tRNA SYNTHESIS
Ibba M, Söll D. AMINOACYL-tRNA SYNTHESIS. Annual Review Of Biochemistry 2000, 69: 617-650. PMID: 10966471, DOI: 10.1146/annurev.biochem.69.1.617.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriaBacterial InfectionsBiological EvolutionEnzyme InhibitorsHumansModels, MolecularRNA, Transfer, Amino AcylConceptsAminoacyl-tRNA synthesisAmino acidsAminoacyl-tRNA synthetaseEvolutionary facetsWhole-genome sequencingCorresponding tRNAsGenetic codeGenome sequencingAminoacyl-tRNACorresponding anticodonTRNACurrent knowledgeStructural dataRecent studiesAnticodonDetailed pictureAcidSequencingSynthetaseEditingProofreadingSynthesisTranslationDirect attachment
1997
Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*
Lenhard B, Filipić S, Landeka I, Škrtić I, Söll D, Weygand-Durašević I. Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*. Journal Of Biological Chemistry 1997, 272: 1136-1141. PMID: 8995413, DOI: 10.1074/jbc.272.2.1136.Peer-Reviewed Original ResearchConceptsMotif 2 loopAmino acid recognitionSeryl-tRNA synthetaseClass II aminoacyl-tRNA synthetasesSeryl-tRNA synthetasesYeast seryl-tRNA synthetaseAmino acidsLoss of complementationAminoacyl-tRNA synthetasesActive sitePresence of tRNASteady-state kinetic analysisProkaryotic counterpartsYeast enzymeElevated Km valuesNull allelesConformational changesTRNAAcceptor endSynthetasesGenesATPStructural dataStructural studiesSerine
1996
Glutaminyl‐tRNA synthetase: from genetics to molecular recognition
Ibba M, Hong K, Söll D. Glutaminyl‐tRNA synthetase: from genetics to molecular recognition. Genes To Cells 1996, 1: 421-427. PMID: 9078373, DOI: 10.1046/j.1365-2443.1996.d01-255.x.Peer-Reviewed Original ResearchConceptsEscherichia coli glutaminyl-tRNA synthetaseMajority of tRNAsCorrect amino acidGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesSequence-specific interactionsAmino acid recognitionEfficiency of aminoacylationGenetic codeTRNA selectionGlnRTRNAAmino acidsNoncognate tRNAsCellular viabilityStructural studiesMolecular recognitionSynthetasesAminoacylationComplex displaysGeneticsSynthetaseGlutamineMechanismViabilityTransfer RNA‐dependent cognate amino acid recognition by an aminoacyl‐tRNA synthetase.
Hong K, Ibba M, Weygand‐Durasevic I, Rogers M, Thomann H, Söll D. Transfer RNA‐dependent cognate amino acid recognition by an aminoacyl‐tRNA synthetase. The EMBO Journal 1996, 15: 1983-1991. PMID: 8617245, PMCID: PMC450117, DOI: 10.1002/j.1460-2075.1996.tb00549.x.Peer-Reviewed Original ResearchConceptsAmino acid recognitionEscherichia coli glutaminyl-tRNA synthetaseAccuracy of aminoacylationProtein-RNA interactionsRole of tRNAGlutaminyl-tRNA synthetaseAmino acid affinityCharacterization of mutantsAminoacyl-tRNA synthetaseAmino acid activationSpecific interactionsSubstrate recognitionEnzyme active siteGlnRActive siteAcceptor stemTRNAAminoacylationAcid affinityPosition 235TerminusSynthetaseObserved roleGlnTRNAGlnAminoacyl-tRNA Synthetases Optimize Both Cognate tRNA Recognition and Discrimination against Noncognate tRNAs †
Sherman J, Söll D. Aminoacyl-tRNA Synthetases Optimize Both Cognate tRNA Recognition and Discrimination against Noncognate tRNAs †. Biochemistry 1996, 35: 601-607. PMID: 8555233, DOI: 10.1021/bi951602b.Peer-Reviewed Original ResearchConceptsTRNA recognitionNoncognate tRNAsEscherichia coli glutaminyl-tRNA synthetaseWild-type GlnRSGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesNucleic acid interactionsGlutamine tRNAFirst base pairMutational analysisSpecific proteinsTRNAGlnRSequence preferenceMutantsBase pairsAcid interactionsDecreased affinityVivoTRNAGlnAffinitySynthetasesProteinSynthetaseCrystal structureEscherichia coli Tryptophanyl-tRNA Synthetase Mutants Selected for Tryptophan Auxotrophy Implicate the Dimer Interface in Optimizing Amino Acid Binding †
Sever S, Rogers K, Rogers M, Carter C, Söll D. Escherichia coli Tryptophanyl-tRNA Synthetase Mutants Selected for Tryptophan Auxotrophy Implicate the Dimer Interface in Optimizing Amino Acid Binding †. Biochemistry 1996, 35: 32-40. PMID: 8555191, DOI: 10.1021/bi952103d.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacillus subtilisBase SequenceBinding SitesCloning, MolecularDNA PrimersEscherichia coliGenes, BacterialGeobacillus stearothermophilusHaemophilus influenzaeKineticsMacromolecular SubstancesModels, MolecularMolecular Sequence DataPolymerase Chain ReactionProtein FoldingProtein Structure, SecondaryRecombinant ProteinsRestriction MappingSequence Homology, Amino AcidTryptophanTryptophan-tRNA LigaseConceptsTryptophanyl-tRNA synthetaseDimer interfaceClass I aminoacyl-tRNA synthetasesAminoacyl-tRNA synthetasesAmino acid bindingAmino acid activationActive siteSteady-state kinetic analysisSynthetase mutantsRossmann foldApparent KmKMSKS loopTrp lociProtein structureTrpR proteinTryptophan auxotrophDimeric enzymeAuxotrophic strainsBacillus stearothermophilusAcid bindingEscherichia coliOptimal catalysisAminoacyl adenylatesMutantsMutations
1995
Substrate selection by aminoacyl-tRNA synthetases.
Ibba M, Thomann H, Hong K, Sherman J, Weygand-Durasevic I, Sever S, Stange-Thomann N, Praetorius M, Söll D. Substrate selection by aminoacyl-tRNA synthetases. Nucleic Acids Symposium Series 1995, 40-2. PMID: 8643392.Peer-Reviewed Original Research
1994
Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
Rogers M, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 291-295. PMID: 7506418, PMCID: PMC42933, DOI: 10.1073/pnas.91.1.291.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesAnticodonBacterial ProteinsEscherichia coliGenes, SuppressorModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, TransferStructure-Activity RelationshipSubstrate SpecificityTransfer RNA AminoacylationConceptsEscherichia coli glutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetaseLys-317Genetic selectionOpal suppressorMutant enzymesWild-type GlnRSAsp-235Anticodon-binding domainSingle amino acid changeSite-directed mutagenesisNumber of mutantsAmino acid changesRecognition of tRNAGlnR mutantAnticodon recognitionAdditional mutantsGln mutantGlnRMutantsAcid changesBase pairsSpecificity constantAminoacylationTRNA
1993
Selection of a ‘minimal’ glutaminyl‐tRNA synthetase and the evolution of class I synthetases.
Schwob E, Söll D. Selection of a ‘minimal’ glutaminyl‐tRNA synthetase and the evolution of class I synthetases. The EMBO Journal 1993, 12: 5201-5208. PMID: 7505222, PMCID: PMC413784, DOI: 10.1002/j.1460-2075.1993.tb06215.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBacterial ProteinsBase SequenceBinding SitesBiological EvolutionEscherichia coliModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, Transfer, GlnRNA, Transfer, SerStructure-Activity RelationshipTransfer RNA AminoacylationConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesEscherichia coli glutaminyl-tRNA synthetaseClass I aminoacyl-tRNA synthetasesNew recognition specificitiesNon-catalytic domainSubstrate recognition propertiesNon-cognate tRNAsRecognition of tRNACommon ancestorSequence motifsAmber suppressorGenetic codeTRNA substratesCatalytic coreGlnRTRNARecognition specificityDistinct domainsEnzymatic activityElaborate relationshipSynthetasesSpecific roleClass ISynthetaseSelectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase
Rogers M, Weygand-Durašević I, Schwob E, Sherman J, Rogers K, Adachi T, Inokuchi H, Söll D. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase. Biochimie 1993, 75: 1083-1090. PMID: 8199243, DOI: 10.1016/0300-9084(93)90007-f.Peer-Reviewed Original ResearchConceptsOpal suppressor tRNAGlutaminyl-tRNA synthetaseAcceptor stem recognitionSuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseGenetic selectionAmber suppressor tRNAExtensive mutational analysisRecognition of tRNARNA contactsTRNA transcriptsRelaxed specificityMutational analysisTRNAGlnRAcceptor stemExtensive proteinIndividual functional groupsMutantsSpecific recognitionAnticodonAminoacylationSynthetaseIdentity elementSynthetases