2024
An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors
Zhang X, Song B, Carlino M, Li G, Ferchen K, Chen M, Thompson E, Kain B, Schnell D, Thakkar K, Kouril M, Jin K, Hay S, Sen S, Bernardicius D, Ma S, Bennett S, Croteau J, Salvatori O, Lye M, Gillen A, Jordan C, Singh H, Krause D, Salomonis N, Grimes H. An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors. Nature Immunology 2024, 25: 703-715. PMID: 38514887, PMCID: PMC11003869, DOI: 10.1038/s41590-024-01782-4.Peer-Reviewed Original ResearchSurface markersLeukemia stem cell populationHematopoietic progenitor compartmentBone marrow cellsHuman bone marrow cellsHuman hematopoietic progenitorsCell surface markersStem cell populationCITE-seqClinical responseHematopoietic progenitorsMarrow cellsProgenitor compartmentCellular Indexing of TranscriptomesTransitional cellsCell populationsProgenitor analysisCellular indicesMultimodal approachGenomics programsProgenitor stateTranscriptome profilingSurface proteinsProgenitorsCell states
2017
Hematopoietic defects in response to reduced Arhgap21
Xavier-Ferrucio J, Ricon L, Vieira K, Longhini AL, Lazarini M, Bigarella CL, Franchi G, Krause DS, Saad STO. Hematopoietic defects in response to reduced Arhgap21. Stem Cell Research 2017, 26: 17-27. PMID: 29212046, PMCID: PMC6084430, DOI: 10.1016/j.scr.2017.11.014.Peer-Reviewed Original ResearchConceptsErythroid commitmentProgenitor cellsSerial bone marrow transplantationHuman primary cellsProtein familyRho GTPasesHematopoietic progenitor cellsPhenotypic HSCsRho GTPaseHematopoietic defectsRhoC activityNegative regulatorARHGAP21Hematopoietic stemHematopoietic cellsMyeloid progenitorsProgenitor coloniesPrimary cellsBone marrow cellsCancer cellsFunctional aspectsHaploinsufficient miceMarrow cellsCellsGTPases
2010
Detection of bone marrow–derived lung epithelial cells
Kassmer SH, Krause DS. Detection of bone marrow–derived lung epithelial cells. Experimental Hematology 2010, 38: 564-573. PMID: 20447442, PMCID: PMC2909593, DOI: 10.1016/j.exphem.2010.04.011.Peer-Reviewed Original ResearchConceptsMarrow-derived epithelial cellsBone marrow-derived cellsMarrow-derived cellsLung epithelial cellsEpithelial cellsBone marrow-derived epithelial cellsDonor bone marrow originBone marrow originBone marrow cellsBlood cell markersNormal tissue repairSpecific cell subsetsCell subsetsGastrointestinal tractTherapeutic benefitMarrow originMultiple organsEpithelial markersDefinitive dataCell markersMarrow cellsProtein expression patternsTissue repairEngraftmentLung
2008
Bone Marrow–derived Lung Epithelial Cells
Krause DS. Bone Marrow–derived Lung Epithelial Cells. Annals Of The American Thoracic Society 2008, 5: 699-702. PMID: 18684720, PMCID: PMC2645262, DOI: 10.1513/pats.200803-031aw.Peer-Reviewed Original ResearchConceptsMarrow-derived epithelial cellsEpithelial cellsBone marrow-derived cellsMarrow-derived cellsLung epithelial cellsClinical significanceEpithelial-specific genesMultiple organsAdult lungMarrow cellsFurther studiesMultiple mechanismsRecent dataCellsRecent studiesSignificant skepticismEngraftmentLungHepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice
Swenson ES, Guest I, Ilic Z, Mazzeo‐Helgevold M, Lizardi P, Hardiman C, Sell S, Krause DS. Hepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice. Stem Cells 2008, 26: 1768-1777. PMID: 18467658, PMCID: PMC2846397, DOI: 10.1634/stemcells.2008-0148.Peer-Reviewed Original ResearchConceptsMarrow-derived epithelial cellsHepatocyte nuclear factor 1Y chromosomeNuclear factor 1Ductal progenitor cellsLiver injuryInflammatory cellsFemale miceProgenitor cellsEpithelial cellsFactor 1Male bone marrowStable hematopoietic engraftmentBone marrow originColocalization of GFPNuclear markersBone marrow cellsDuctal progenitorsHematopoietic engraftmentChromosomesBone marrowMarrow originPancytokeratin stainingCholangiocyte phenotypeMarrow cells
2007
Bone Marrow Contributes to Epithelial Cancers in Mice and Humans as Developmental Mimicry
Cogle CR, Theise ND, Fu D, Ucar D, Lee S, Guthrie SM, Lonergan J, Rybka W, Krause DS, Scott EW. Bone Marrow Contributes to Epithelial Cancers in Mice and Humans as Developmental Mimicry. Stem Cells 2007, 25: 1881-1887. PMID: 17478582, DOI: 10.1634/stemcells.2007-0163.Peer-Reviewed Original ResearchConceptsEpithelial cancersEpithelial neoplasiaHematopoietic stem cellsNeoplastic environmentStem cellsHematopoietic cell transplantationBone marrow cellsHuman marrowMarrow involvementMarrow cellsSmall bowelCell transplantationLung neoplasiaMouse modelBone marrowMimicryDistant organsNeoplasiaCancerMarrowStable fusionCellsPhenotypeInductionBowel
2004
Plasticity of Bone Marrow–Derived Stem Cells
Grove JE, Bruscia E, Krause DS. Plasticity of Bone Marrow–Derived Stem Cells. Stem Cells 2004, 22: 487-500. PMID: 15277695, DOI: 10.1634/stemcells.22-4-487.Peer-Reviewed Original ResearchConceptsBone marrow stem cellsHematopoietic stem cellsStem cellsCell plasticityMesenchymal stem cellsStem cell plasticityGene expression profilesAdult stem cellsAdult bone marrow cellsMature lineagesAdult bone marrow stem cellsTissue of originExpression profilesMature cellsMarrow stem cellsBone marrow cellsNonhematopoietic tissuesMature phenotypePlasticityMarrow cellsCellsLineagesBone marrowPhenotypeTissue
2002
Bone marrow to liver: the blood of Prometheus
Theise ND, Krause DS. Bone marrow to liver: the blood of Prometheus. Seminars In Cell And Developmental Biology 2002, 13: 411-417. PMID: 12468241, DOI: 10.1016/s1084952102001283.Peer-Reviewed Original ResearchRadiation pneumonitis in mice A severe injury model for pneumocyte engraftment from bone marrow
Theise ND, Henegariu O, Grove J, Jagirdar J, Kao PN, Crawford JM, Badve S, Saxena R, Krause DS. Radiation pneumonitis in mice A severe injury model for pneumocyte engraftment from bone marrow. Experimental Hematology 2002, 30: 1333-1338. PMID: 12423687, DOI: 10.1016/s0301-472x(02)00931-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersBone Marrow TransplantationCell DifferentiationCell LineageEpithelial CellsFemaleGraft SurvivalIn Situ Hybridization, FluorescenceLungMaleMiceModels, AnimalPulmonary AlveoliPulmonary Surfactant-Associated Protein BRadiation ChimeraRadiation PneumonitisRNA, MessengerStem Cell TransplantationStem CellsY ChromosomeConceptsBone marrow transplantType II pneumocytesBone marrow cellsFemale miceLethal irradiationAge-matched male donorsWhole bone marrow transplantsMarrow cellsDay 5 posttransplantAlveolar lining cellsFluorescence-activated cell sorterSevere injury modelType I cellsAlveolar breakdownEntire alveoliRadiation pneumonitisB messenger RNAHistologic evidenceMarrow transplantAcute injuryMonth 2Injury modelLung tissueLining cellsBone marrow
2001
Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell
Krause D, Theise N, Collector M, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis S. Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell. Cell 2001, 105: 369-377. PMID: 11348593, DOI: 10.1016/s0092-8674(01)00328-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD34Antigens, LyBone Marrow CellsCell LineageCell MovementEpithelial CellsFemaleFluorescent DyesHematopoietic Stem Cell TransplantationHematopoietic Stem CellsHumansImmunohistochemistryIn Situ Hybridization, FluorescenceIntestine, SmallKeratinsLungMaleMembrane ProteinsMiceMice, KnockoutOrganic ChemicalsPulmonary SurfactantsStem CellsY ChromosomeConceptsLong-term repopulationSingle bone marrowMulti-lineage engraftmentAdult bone marrow cellsProperties of HSCHematopoietic stemSecondary hostsGenetic diseasesStem cellsBone marrow cellsExpression increasesDifferentiative capacityBone marrowEpithelial cellsSerial transplantationRare cellsTissue repairMarrow cellsCellsDifferentiationHostSecondary recipientsGI tractPhenotypeMarrow
2000
Derivation of hepatocytes from bone marrow cells in mice after radiation‐induced myeloablation
Theise N, Badve S, Saxena R, Henegariu O, Sell S, Crawford J, Krause D. Derivation of hepatocytes from bone marrow cells in mice after radiation‐induced myeloablation. Hepatology 2000, 31: 235-240. PMID: 10613752, DOI: 10.1002/hep.510310135.Peer-Reviewed Original ResearchConceptsBone marrow cellsY chromosomeMarrow cellsFemale miceMessenger RNAWhole bone marrow transplantsAge-matched male donorsDerivation of hepatocytesSkeletal muscle regenerationSevere acute injuryAcute hepatic injuryBone marrow transplantationBone marrow transplantSimultaneous FISHFluorescence-activated cell sorterMale-derived cellsOval cell proliferationDays posttransplantationMonths posttransplantationHepatic injuryMarrow transplantationMarrow transplantAcute injuryMonth 2Hepatic engraftment
1999
Functional activity of murine CD34+and CD34− hematopoietic stem cell populations
Donnelly D, Zelterman D, Sharkis S, Krause D. Functional activity of murine CD34+and CD34− hematopoietic stem cell populations. Experimental Hematology 1999, 27: 788-796. PMID: 10340393, DOI: 10.1016/s0301-472x(99)00032-6.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsCD34-LinStem cellsMurine bone marrow cellsHematopoietic stem cell populationStem cell populationCD34- hematopoietic stem cellsCompetitive repopulation experimentsHuman hematopoietic stem cellsClinical transplantation protocolsLong-term engraftmentBone marrowMarrow repopulating cellsBone marrow cellsDistinct populationsRepopulation experimentsRepopulating cellsCell populationsBone marrow repopulating cellsCD34 cellsMarrow cellsCell numberCellsFunctional activityBone marrow reconstitution
1998
Cytosine Deaminase Adenoviral Vector and 5-Fluorocytosine Selectively Reduce Breast Cancer Cells 1 Million-Fold When They Contaminate Hematopoietic Cells: A Potential Purging Method for Autologous Transplantation
Garcia-Sanchez F, Pizzorno G, Fu SQ, Nanakorn T, Krause DS, Liang J, Adams E, Leffert JJ, Yin LH, Cooperberg MR, Hanania E, Wang WL, Won JH, Peng XY, Cote R, Brown R, Burtness B, Giles R, Crystal R, Deisseroth AB. Cytosine Deaminase Adenoviral Vector and 5-Fluorocytosine Selectively Reduce Breast Cancer Cells 1 Million-Fold When They Contaminate Hematopoietic Cells: A Potential Purging Method for Autologous Transplantation. Blood 1998, 92: 672-682. PMID: 9657770, DOI: 10.1182/blood.v92.2.672.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAnimalsAntimetabolites, AntineoplasticBreast NeoplasmsCell DeathCytosine DeaminaseFemaleFlucytosineFluorouracilGene Transfer TechniquesGenetic VectorsHematopoietic Stem Cell MobilizationHematopoietic Stem Cell TransplantationHematopoietic Stem CellsHumansMaleMiceNucleoside DeaminasesProdrugsTransplantation, AutologousTumor Cells, CulturedConceptsBreast cancer cellsPeripheral blood mononuclear cellsBreast cancer patientsCancer patientsCytosine deaminase geneHuman mammary epithelial cellsAdenoviral vectorCancer cellsHours of exposureHematopoietic cellsAutologous stem cell productsMarrow cellsEscherichia coli cytosine deaminase geneReplication-incompetent adenoviral vectorEpithelial cellsChemotherapy-induced myelosuppressionBreast cancer cell line MCF-7Blood mononuclear cellsEarly hematopoietic precursor cellsMale donor miceCancer cell line MCF-7Fluorescence-activated cell sorting (FACS) analysisMCF-7 breast cancer cellsNormal human mammary epithelial cellsMDA-MB-453