Featured Publications
Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase
Zhang Y, Corbett E, Wu S, Schatz DG. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. The EMBO Journal 2020, 39: embj2020105857. PMID: 32945578, PMCID: PMC7604617, DOI: 10.15252/embj.2020105857.Peer-Reviewed Original ResearchConceptsTarget site DNASite DNARAG1/RAG2 recombinaseSuppression of transpositionCryo-electron microscopyStrand transfer complexAntigen receptor genesDomesticated transposaseTarget DNARAG recombinaseEvolutionary adaptationPaste transpositionStructural basisTransposition activityMechanistic principlesFunctional assaysTransposon endDNAReceptor geneBase unstackingDomesticationTransposaseRecombinaseAdaptive immunityFinal step
2021
RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination
Gan T, Wang Y, Liu Y, Schatz DG, Hu J. RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports 2021, 37: 109824. PMID: 34644584, PMCID: PMC8783374, DOI: 10.1016/j.celrep.2021.109824.Peer-Reviewed Original Research
2020
Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID
Kuhny M, Forbes LR, Çakan E, Vega-Loza A, Kostiuk V, Dinesh RK, Glauzy S, Stray-Pedersen A, Pezzi AE, Hanson IC, Vargas-Hernandez A, Xu ML, Akdemir Z, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Chinn IK, Schatz DG, Orange JS, Meffre E. Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. Journal Of Clinical Investigation 2020, 130: 4411-4422. PMID: 32484799, PMCID: PMC7410074, DOI: 10.1172/jci131297.Peer-Reviewed Original ResearchConceptsB cellsActivation-induced cytidine deaminaseHealthy donor counterpartsIsotype-switched B cellsCommon variable immunodeficiencyMemory B cellsSomatic hypermutationAutoimmune cytopeniasDecreased incidenceVariable immunodeficiencyB cell linesUnderlying molecular defectsNuclear AIDPatient's EBVRamos B cellsPatientsProtein 1Cell linesMolecular defectsCellsCytidine deaminaseMutations
2019
Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire
Shinoda K, Maman Y, Canela A, Schatz DG, Livak F, Nussenzweig A. Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Reports 2019, 29: 4471-4481.e6. PMID: 31875554, PMCID: PMC8214342, DOI: 10.1016/j.celrep.2019.11.088.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksRecombination signal sequencesVκ gene segmentsGene segmentsDouble-strand breaksVariable gene segmentsRAG proteinsSignal sequenceV-J rearrangementRecombination eventsSpacer regionVκ-JκRecombinationLevels of breakageComplete absenceProteinLarge fractionDeletionJκSequence
2015
Single-molecule analysis of RAG-mediated V(D)J DNA cleavage
Lovely GA, Brewster RC, Schatz DG, Baltimore D, Phillips R. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: e1715-e1723. PMID: 25831509, PMCID: PMC4394307, DOI: 10.1073/pnas.1503477112.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesSingle-molecule assaysSame DNA moleculeAntigen receptor genesConsensus recombination signal sequencesSingle-molecule analysisHigh mobility group box protein 1Individual molecular eventsSignal sequenceSingle-molecule levelGene productsDNA bindingMolecular eventsLymphocyte developmentDNA moleculesDNA cleavageProtein 1Synapse formationSynaptic complexReceptor geneCleavageRAGAssaysRAG1/2ComplexesMapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2* ♦
Zhang YH, Shetty K, Surleac MD, Petrescu AJ, Schatz DG. Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2* ♦. Journal Of Biological Chemistry 2015, 290: 11802-11817. PMID: 25745109, PMCID: PMC4424321, DOI: 10.1074/jbc.m115.638627.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCatalytic DomainDNA-Binding ProteinsGene Expression RegulationGenome, HumanHEK293 CellsHomeodomain ProteinsHumansInterferometryMaleMiceMice, Inbred C57BLMolecular Sequence DataMutationNuclear ProteinsProtein BindingProtein Interaction MappingProtein Structure, SecondaryThymus GlandV(D)J RecombinationVDJ RecombinasesConceptsRegion of RAG1Α-helixZinc finger regionResidues N-terminalActive siteAcidic amino acidsPulldown assaysAccessory factorsHermes transposaseProteins RAG1Finger regionRAG activityQuantitative Western blottingC-terminusRAG endonucleaseN-terminalCatalytic functionRAG1Amino acidsDNA cleavageRAG2Nuclear concentrationRecombination activityCatalytic centerBiolayer interferometrySpatio-temporal regulation of RAG2 following genotoxic stress
Rodgers W, Byrum JN, Sapkota H, Rahman NS, Cail RC, Zhao S, Schatz DG, Rodgers KK. Spatio-temporal regulation of RAG2 following genotoxic stress. DNA Repair 2015, 27: 19-27. PMID: 25625798, PMCID: PMC4336829, DOI: 10.1016/j.dnarep.2014.12.008.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAtaxia Telangiectasia Mutated ProteinsCell NucleusCells, CulturedCentrosomeDNADNA Breaks, Double-StrandedDNA RepairDNA-Binding ProteinsGene Knockdown TechniquesHumansMicroscopy, FluorescenceMutationNuclear ProteinsPrecursor Cells, B-LymphoidRadiation, IonizingSubcellular FractionsVDJ RecombinasesConceptsDNA double-strand breaksGenotoxic stressorsCellular responsesFormation of DSBsLymphocyte antigen receptor genesDNA DSBsSpatio-temporal regulationInhibition of ATMDNA damaging agentsSubcellular fractionation approachDouble-strand breaksAntigen receptor genesNuclear Rag2Genotoxic stressRAG complexDNA repairIncorrect repairDamaging agentsStrand breaksNovel mechanismRAG2Receptor geneCentrosomesFractionation approachSubstantial enrichment
2012
A Dual Interaction between the DNA Damage Response Protein MDC1 and the RAG1 Subunit of the V(D)J Recombinase*
Coster G, Gold A, Chen D, Schatz DG, Goldberg M. A Dual Interaction between the DNA Damage Response Protein MDC1 and the RAG1 Subunit of the V(D)J Recombinase*. Journal Of Biological Chemistry 2012, 287: 36488-36498. PMID: 22942284, PMCID: PMC3476314, DOI: 10.1074/jbc.m112.402487.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsBRCA1 ProteinCell Cycle ProteinsCell Line, TumorHistonesHomeodomain ProteinsHumansModels, BiologicalNuclear ProteinsPeptide MappingPhosphorylationProtein Structure, TertiaryRepetitive Sequences, Amino AcidTrans-ActivatorsVDJ RecombinasesConceptsDNA double-strand breaksDNA damage responseTandem BRCA1 C-terminal (BRCT) domainsC-terminusSpecific DNA double-strand breaksBRCA1 C-terminal domainC-terminal domainThreonine-rich repeatsDouble-strand breaksRAG1 subunitRAG recombinaseRAG2 proteinsDDR proteinsDamage responseRegulatory signalsBinding interfaceBreak siteHistone H2AXRAG activityRich repeatsNon-core regionsMDC1RAG1PhosphorylationSubsequent signal amplification
2011
A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation
Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE, Teng G, Carroll T, Terry A, Horan K, Marks H, Adams DJ, Schatz DG, Aragon L, Fisher AG, Krangel MS, Nasmyth K, Merkenschlager M. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 2011, 476: 467-471. PMID: 21832993, PMCID: PMC3179485, DOI: 10.1038/nature10312.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCell DifferentiationChromosomal Proteins, Non-HistoneDNA-Binding ProteinsGene Expression RegulationGene Rearrangement, T-LymphocyteGenes, RAG-1MiceNuclear ProteinsPhosphoproteinsReceptors, Antigen, T-Cell, alpha-betaRecombinasesThymus GlandTranscription, Genetic
2007
Fluorescence Resonance Energy Transfer Analysis of Recombination Signal Sequence Configuration in the RAG1/2 Synaptic Complex
Ciubotaru M, Kriatchko AN, Swanson PC, Bright FV, Schatz DG. Fluorescence Resonance Energy Transfer Analysis of Recombination Signal Sequence Configuration in the RAG1/2 Synaptic Complex. Molecular And Cellular Biology 2007, 27: 4745-4758. PMID: 17470556, PMCID: PMC1951485, DOI: 10.1128/mcb.00177-07.Peer-Reviewed Original Research
2006
Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo
Chatterji M, Tsai CL, Schatz DG. Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo. Molecular And Cellular Biology 2006, 26: 1558-1568. PMID: 16449665, PMCID: PMC1367191, DOI: 10.1128/mcb.26.4.1558-1568.2006.Peer-Reviewed Original ResearchConceptsRAG proteinsVertebrate cellsTransposition eventsEnd fragmentsFull-length RAG2Embryonic kidney cell lineHuman embryonic kidney cell lineTarget site duplicationsGenome instabilityHuman genomeSignal endsKidney cell lineGenomic instabilityTranslocation eventsSite duplicationsChromosomal translocationsDNA cleavageComplex rearrangementsChromosome deletionsEssential roleProteinCell linesEpisomesDeletionAssays
2005
Biochemistry of V(D)J Recombination
Schatz DG, Spanopoulou E. Biochemistry of V(D)J Recombination. Current Topics In Microbiology And Immunology 2005, 290: 49-85. PMID: 16480039, DOI: 10.1007/3-540-26363-2_4.Peer-Reviewed Original Research
2004
V(D)J recombination
Schatz DG. V(D)J recombination. Immunological Reviews 2004, 200: 5-11. PMID: 15242391, DOI: 10.1111/j.0105-2896.2004.00173.x.Peer-Reviewed Original ResearchMutational Analysis of Terminal Deoxynucleotidyltransferase- Mediated N-Nucleotide Addition in V(D)J Recombination
Repasky JA, Corbett E, Boboila C, Schatz DG. Mutational Analysis of Terminal Deoxynucleotidyltransferase- Mediated N-Nucleotide Addition in V(D)J Recombination. The Journal Of Immunology 2004, 172: 5478-5488. PMID: 15100289, DOI: 10.4049/jimmunol.172.9.5478.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody DiversityCell LineCHO CellsCricetinaeDNA Mutational AnalysisDNA NucleotidylexotransferaseDNA-Binding ProteinsGene RearrangementHomeodomain ProteinsHumansImmunoglobulin Joining RegionImmunoglobulin Variable RegionIsoenzymesMiceNuclear ProteinsNucleotidesOpen Reading FramesPlasmidsRecombination, GeneticSignal TransductionSubstrate SpecificityTemplates, GeneticConceptsNucleotide additionEntire C-terminal regionAg receptor genesProtein-DNA interactionsC-terminal domainStructure-function analysisC-terminal regionN-terminal portionIndividual structural motifsUnique DNA polymeraseBRCT domainHelix domainTdT proteinCatalytic regionDeletional analysisMutational analysisLong isoformNontemplated (N) nucleotidesNucleotide deletionDNA polymeraseDiverse repertoireReceptor geneStructural motifsNonlymphoid cellsCritical role
2003
DNA mismatches and GC‐rich motifs target transposition by the RAG1/RAG2 transposase
Tsai C, Chatterji M, Schatz DG. DNA mismatches and GC‐rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Research 2003, 31: 6180-6190. PMID: 14576304, PMCID: PMC275461, DOI: 10.1093/nar/gkg819.Peer-Reviewed Original ResearchDefective DNA Repair and Increased Genomic Instability in Artemis-deficient Murine Cells
Rooney S, Alt FW, Lombard D, Whitlow S, Eckersdorff M, Fleming J, Fugmann S, Ferguson DO, Schatz DG, Sekiguchi J. Defective DNA Repair and Increased Genomic Instability in Artemis-deficient Murine Cells. Journal Of Experimental Medicine 2003, 197: 553-565. PMID: 12615897, PMCID: PMC2193825, DOI: 10.1084/jem.20021891.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBleomycinCell LineChromosome AberrationsDNADNA DamageDNA RepairDNA-Binding ProteinsEmbryo, MammalianEndonucleasesGene TargetingGenomeHomeodomain ProteinsHumansIn Situ Hybridization, FluorescenceMiceMutationNuclear ProteinsRadiation, IonizingRecombination, GeneticSequence Analysis, DNASevere Combined ImmunodeficiencyStem CellsTelomere
2002
Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination
Tsai CL, Drejer AH, Schatz DG. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes & Development 2002, 16: 1934-1949. PMID: 12154124, PMCID: PMC186421, DOI: 10.1101/gad.984502.Peer-Reviewed Original ResearchAlanineAmino Acid SubstitutionAnimalsCell LineCysteineDNADNA NucleotidyltransferasesDNA-Binding ProteinsGene Rearrangement, B-LymphocyteGenes, RAG-1Glutamic AcidHomeodomain ProteinsHumansMacromolecular SubstancesMiceMutagenesis, Site-DirectedNuclear ProteinsNucleic Acid ConformationPhenotypeProtein Interaction MappingRecombinant Fusion ProteinsRecombination, GeneticRegulatory Sequences, Nucleic AcidSerineSubstrate SpecificityVDJ Recombinases
2001
Factors and Forces Controlling V(D)J Recombination
Hesslein D, Schatz D. Factors and Forces Controlling V(D)J Recombination. Advances In Immunology 2001, 78: 169-232. PMID: 11432204, DOI: 10.1016/s0065-2776(01)78004-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2000
The RAG Proteins and V(D)J Recombination: Complexes, Ends, and Transposition
Fugmann S, Lee A, Shockett P, Villey I, Schatz D. The RAG Proteins and V(D)J Recombination: Complexes, Ends, and Transposition. Annual Review Of Immunology 2000, 18: 495-527. PMID: 10837067, DOI: 10.1146/annurev.immunol.18.1.495.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1999
Transposition mediated by RAG1 and RAG2 and the evolution of the adaptive immune system
Schatz D. Transposition mediated by RAG1 and RAG2 and the evolution of the adaptive immune system. Immunologic Research 1999, 19: 169-182. PMID: 10493171, DOI: 10.1007/bf02786485.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsTransposable elementsAncestral receptor geneAdaptive immune systemReceptor gene segmentsReceptor geneAntigen receptor genesRAG proteinsRAG2 proteinsChromosomal DNAFunctional transposaseMillion yearsGene segmentsRAG1Dramatic supportImmune systemGenesRecent findingsUnusual structureProteinVertebratesTransposaseRAG2DNAEvolutionRecombination