Featured Publications
HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation
Wu L, Shukla V, Yadavalli AD, Dinesh RK, Xu D, Rao A, Schatz DG. HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes & Development 2022, 36: 433-450. PMID: 35450882, PMCID: PMC9067407, DOI: 10.1101/gad.349438.122.Peer-Reviewed Original ResearchStructures of a RAG-like transposase during cut-and-paste transposition
Liu C, Yang Y, Schatz DG. Structures of a RAG-like transposase during cut-and-paste transposition. Nature 2019, 575: 540-544. PMID: 31723264, PMCID: PMC6872938, DOI: 10.1038/s41586-019-1753-7.Peer-Reviewed Original ResearchConceptsCryo-electron microscopy structureC-terminal tailUnique structural elementsStrand transfer complexEukaryotic cutEvolutionary progenitorsMicroscopy structureRAG recombinasePaste transpositionApo enzymeSubstrate DNAHelicoverpa zeaConformational changesEarly stepsTransposaseAdaptive immune systemDNATarget siteTransposonTarget DNAPivotal roleActive siteEnzymeTransposition processEssential component
2023
Dancing with DNA: AID embraces flexible partners
Wang J, Schatz D. Dancing with DNA: AID embraces flexible partners. Cell Research 2023, 33: 743-744. PMID: 37173514, PMCID: PMC10542796, DOI: 10.1038/s41422-023-00823-1.Peer-Reviewed Original ResearchDNA
2020
Making ends meet in class switch recombination
Wu L, Schatz DG. Making ends meet in class switch recombination. Cell Research 2020, 30: 711-712. PMID: 32451457, PMCID: PMC7609326, DOI: 10.1038/s41422-020-0342-5.Peer-Reviewed Original Research
2019
Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire
Shinoda K, Maman Y, Canela A, Schatz DG, Livak F, Nussenzweig A. Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Reports 2019, 29: 4471-4481.e6. PMID: 31875554, PMCID: PMC8214342, DOI: 10.1016/j.celrep.2019.11.088.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksRecombination signal sequencesVκ gene segmentsGene segmentsDouble-strand breaksVariable gene segmentsRAG proteinsSignal sequenceV-J rearrangementRecombination eventsSpacer regionVκ-JκRecombinationLevels of breakageComplete absenceProteinLarge fractionDeletionJκSequence
2018
DNA melting initiates the RAG catalytic pathway
Ru H, Mi W, Zhang P, Alt FW, Schatz DG, Liao M, Wu H. DNA melting initiates the RAG catalytic pathway. Nature Structural & Molecular Biology 2018, 25: 732-742. PMID: 30061602, PMCID: PMC6080600, DOI: 10.1038/s41594-018-0098-5.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesDNA meltingCryo-EM structureBase-specific contactsSignal sequenceDNA transpositionSubstrate bindingRetroviral integrationRAG endonucleaseDimer openingTerminal sequenceGTG sequenceDNA cleavageScissile phosphateDNAUniversal mechanismPiston-like movementSequenceActive siteHeptamerRetrotransposonsCatalytic pathwayTransposonComplexesEndonuclease
2015
Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination
Shetty K, Schatz DG. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Molecular And Cellular Biology 2015, 35: 3701-3713. PMID: 26303526, PMCID: PMC4589606, DOI: 10.1128/mcb.00219-15.Peer-Reviewed Original ResearchConceptsConserved heptamerRAG2 proteinsChromatin immunoprecipitationNonamer elementsRecombination substratesSignal sequenceNonamer sequencesMutant formsCryptic RSSsRAG1DNA cleavageGene segmentsChromatinCell linesRAG2ProteinRecruitmentRecombinationSequenceMajor roleMutagenesisImmunoprecipitationRepeatsRSSsRAGSingle-molecule analysis of RAG-mediated V(D)J DNA cleavage
Lovely GA, Brewster RC, Schatz DG, Baltimore D, Phillips R. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: e1715-e1723. PMID: 25831509, PMCID: PMC4394307, DOI: 10.1073/pnas.1503477112.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesSingle-molecule assaysSame DNA moleculeAntigen receptor genesConsensus recombination signal sequencesSingle-molecule analysisHigh mobility group box protein 1Individual molecular eventsSignal sequenceSingle-molecule levelGene productsDNA bindingMolecular eventsLymphocyte developmentDNA moleculesDNA cleavageProtein 1Synapse formationSynaptic complexReceptor geneCleavageRAGAssaysRAG1/2ComplexesSpatio-temporal regulation of RAG2 following genotoxic stress
Rodgers W, Byrum JN, Sapkota H, Rahman NS, Cail RC, Zhao S, Schatz DG, Rodgers KK. Spatio-temporal regulation of RAG2 following genotoxic stress. DNA Repair 2015, 27: 19-27. PMID: 25625798, PMCID: PMC4336829, DOI: 10.1016/j.dnarep.2014.12.008.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAtaxia Telangiectasia Mutated ProteinsCell NucleusCells, CulturedCentrosomeDNADNA Breaks, Double-StrandedDNA RepairDNA-Binding ProteinsGene Knockdown TechniquesHumansMicroscopy, FluorescenceMutationNuclear ProteinsPrecursor Cells, B-LymphoidRadiation, IonizingSubcellular FractionsVDJ RecombinasesConceptsDNA double-strand breaksGenotoxic stressorsCellular responsesFormation of DSBsLymphocyte antigen receptor genesDNA DSBsSpatio-temporal regulationInhibition of ATMDNA damaging agentsSubcellular fractionation approachDouble-strand breaksAntigen receptor genesNuclear Rag2Genotoxic stressRAG complexDNA repairIncorrect repairDamaging agentsStrand breaksNovel mechanismRAG2Receptor geneCentrosomesFractionation approachSubstantial enrichment
2014
The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes
Ciubotaru M, Surleac MD, Metskas LA, Koo P, Rhoades E, Petrescu AJ, Schatz DG. The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes. Nucleic Acids Research 2014, 43: 917-931. PMID: 25550426, PMCID: PMC4333397, DOI: 10.1093/nar/gku1348.Peer-Reviewed Original Research
2013
Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA
Little AJ, Corbett E, Ortega F, Schatz DG. Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA. Nucleic Acids Research 2013, 41: 3289-3301. PMID: 23325855, PMCID: PMC3597659, DOI: 10.1093/nar/gks1461.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesFluorescence anisotropy experimentsRAG-RSS complexesHigh mobility group box proteinAbsence of DNAGroup box proteinArchitectural proteinsPulldown experimentsRAG2 bindBox proteinSignal sequenceCooperative recruitmentComplex assemblyRecombinase complexStable integrationSequence specificitySynergistic binding effectAnisotropy experimentsAddition of DNAOrder of eventsRAG1DNAHMGB1 proteinProteinConcentration-dependent mannerRAG and HMGB1 create a large bend in the 23RSS in the V(D)J recombination synaptic complexes
Ciubotaru M, Trexler AJ, Spiridon LN, Surleac MD, Rhoades E, Petrescu AJ, Schatz DG. RAG and HMGB1 create a large bend in the 23RSS in the V(D)J recombination synaptic complexes. Nucleic Acids Research 2013, 41: 2437-2454. PMID: 23293004, PMCID: PMC3575807, DOI: 10.1093/nar/gks1294.Peer-Reviewed Original Research
2012
Identification of Core DNA Elements That Target Somatic Hypermutation
Kohler KM, McDonald JJ, Duke JL, Arakawa H, Tan S, Kleinstein SH, Buerstedde JM, Schatz DG. Identification of Core DNA Elements That Target Somatic Hypermutation. The Journal Of Immunology 2012, 189: 5314-5326. PMID: 23087403, PMCID: PMC3664039, DOI: 10.4049/jimmunol.1202082.Peer-Reviewed Original ResearchMeSH Keywords3' Flanking RegionAnimalsB-LymphocytesCells, CulturedChickensChromatin ImmunoprecipitationCytidine DeaminaseDNAEnhancer Elements, GeneticGenes, ImmunoglobulinGenetic LociImmunoassayImmunoglobulin Variable RegionMutationPhosphorylationRNA Polymerase IISerineSomatic Hypermutation, ImmunoglobulinTranscription, GeneticConceptsActivation-induced deaminaseDNA elementsSomatic hypermutationChicken DT40 B cellsIg lociChromatin immunoprecipitation experimentsDT40 B cellsRNA polymerase IISystematic deletion analysisL chain lociNon-Ig genesCore DNA elementSerine 5Epigenetic marksPolymerase IITranscriptional elongationMutational machineryDeletion analysisReporter cassetteImmunoprecipitation experimentsDeoxycytosine residuesIg genesDNA damageChain locusLoci
2010
Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination
Ji Y, Little AJ, Banerjee JK, Hao B, Oltz EM, Krangel MS, Schatz DG. Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination. Journal Of Experimental Medicine 2010, 207: 2809-2816. PMID: 21115692, PMCID: PMC3005232, DOI: 10.1084/jem.20101136.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnimalsBinding, CompetitiveChromatin ImmunoprecipitationDNAEnhancer Elements, GeneticFemaleGene RearrangementGenes, ImmunoglobulinGenotypeHistonesHMGB1 ProteinHomeodomain ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutPromoter Regions, GeneticProtein BindingReceptors, Antigen, T-Cell, alpha-betaRecombination, GeneticTranscription, GeneticVDJ Recombinases
2009
Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis
Yin FF, Bailey S, Innis CA, Ciubotaru M, Kamtekar S, Steitz TA, Schatz DG. Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Nature Structural & Molecular Biology 2009, 16: 499-508. PMID: 19396172, PMCID: PMC2715281, DOI: 10.1038/nsmb.1593.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsBase SequenceChromosome PairingCrystallography, X-RayDNAFluorescence Resonance Energy TransferHomeodomain ProteinsMiceModels, MolecularMolecular Sequence DataNucleic Acid ConformationProtein MultimerizationProtein Structure, QuaternaryProtein Structure, TertiarySolutionsStatic ElectricityBalancing AID and DNA repair during somatic hypermutation
Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends In Immunology 2009, 30: 173-181. PMID: 19303358, DOI: 10.1016/j.it.2009.01.007.Peer-Reviewed Original Research
2007
DNA deaminases converge on adaptive immunity
Schatz DG. DNA deaminases converge on adaptive immunity. Nature Immunology 2007, 8: 551-553. PMID: 17514205, DOI: 10.1038/ni0607-551.Peer-Reviewed Original Research
2006
Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo
Chatterji M, Tsai CL, Schatz DG. Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo. Molecular And Cellular Biology 2006, 26: 1558-1568. PMID: 16449665, PMCID: PMC1367191, DOI: 10.1128/mcb.26.4.1558-1568.2006.Peer-Reviewed Original ResearchConceptsRAG proteinsVertebrate cellsTransposition eventsEnd fragmentsFull-length RAG2Embryonic kidney cell lineHuman embryonic kidney cell lineTarget site duplicationsGenome instabilityHuman genomeSignal endsKidney cell lineGenomic instabilityTranslocation eventsSite duplicationsChromosomal translocationsDNA cleavageComplex rearrangementsChromosome deletionsEssential roleProteinCell linesEpisomesDeletionAssays
2004
Synapsis of Recombination Signal Sequences Located in cis and DNA Underwinding in V(D)J Recombination
Ciubotaru M, Schatz DG. Synapsis of Recombination Signal Sequences Located in cis and DNA Underwinding in V(D)J Recombination. Molecular And Cellular Biology 2004, 24: 8727-8744. PMID: 15367690, PMCID: PMC516766, DOI: 10.1128/mcb.24.19.8727-8744.2004.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesDNA substratesSignal sequenceDNA distortionHigh mobility group proteinsProtein conformational changesSame DNA moleculeDouble-strand DNA cleavageRAG proteinsRAG2 proteinsDNA underwindingGroup proteinsSite of cleavagePreferred substrateConformational changesDNA moleculesDNA cleavageProteinRelaxed substrateUnderwindingRecombinationCleavageSequenceSuch substratesHMG1UNGstoppable Switching
Unniraman S, Fugmann SD, Schatz DG. UNGstoppable Switching. Science 2004, 305: 1113-1114. PMID: 15326342, DOI: 10.1126/science.1102692.Peer-Reviewed Original Research