2022
Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry
Simon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nature Communications 2022, 13: 749. PMID: 35136069, PMCID: PMC8826447, DOI: 10.1038/s41467-022-28427-0.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceCatalytic DomainCell Cycle ProteinsConserved SequenceCrystallography, X-RayHistonesHumansMolecular ChaperonesMolecular Docking SimulationMolecular MimicryMutagenesisPeptide LibraryPhosphorylationProtein KinasesRecombinant ProteinsSubstrate SpecificityConceptsTousled-like kinaseDNA replication-coupled nucleosome assemblyNuclear serine-threonine kinaseReplication-coupled nucleosome assemblyHistone chaperone proteinsGlobular N-terminal domainProper cell divisionPhosphorylation site motifsSerine-threonine kinaseShort sequence motifsAsf1 histone chaperonesC-terminal tailN-terminal domainHistone chaperonesGenome maintenanceNucleosome assemblySequence motifsChaperone proteinsNon-catalytic interactionsCatalytic domainCell divisionSite motifN-terminusStringent selectivityCell growth
2021
PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK
Cho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Reports 2021, 34: 108928. PMID: 33789117, PMCID: PMC8068315, DOI: 10.1016/j.celrep.2021.108928.Peer-Reviewed Original ResearchConceptsProtein kinase cascadeCore oncogenic pathwaysKey negative regulatorOncogenic ERKERK pathway activationCrosstalk regulationCentral kinaseKinase cascadePhosphorylation sitesRegulatory subunitRaf-MEKNegative regulatorERK pathwayDrug targetsOncogenic pathwaysMEKMEK inhibitorsDephosphorylationPathway activationPPP6CPhosphatasePathwayERKHyperphosphorylationCascade
2020
Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation
Su VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. Journal Of Biological Chemistry 2020, 295: 3269-3284. PMID: 32005669, PMCID: PMC7062153, DOI: 10.1074/jbc.ra119.009794.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic domain-associated protein-1N-terminal regionNuclear accumulationP21-activated kinase 4Ser-10Nuclear roleSerine phosphorylationNuclear localizationPhosphorylation-mimicking substitutionsNuclear localization signalCell-cell junctionsSer-25Localization signalKRIT1 functionThreonine residuesAdaptor proteinKRIT1 lossSubcellular localizationNeurovascular dysplasiaBlood vessel integrityVascular developmentKinase 4Cultured cellsPhosphorylationProtein 1
2015
Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*
Simpson MA, Bradley WD, Harburger D, Parsons M, Calderwood DA, Koleske AJ. Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*. Journal Of Biological Chemistry 2015, 290: 8360-8372. PMID: 25694433, PMCID: PMC4375489, DOI: 10.1074/jbc.m115.638874.Peer-Reviewed Original ResearchConceptsIntegrin β1 cytoplasmic tailExtracellular matrix adhesion receptorsSrc homology domainFibroblast cell motilityIntegrin β1Β1 cytoplasmic tailMembrane-proximal segmentAdhesion complex formationMatrix adhesion receptorsNonreceptor tyrosine kinaseArg kinase activityArg nonreceptor tyrosine kinaseCancer cell invasivenessHomology domainActin cytoskeletonCytoplasmic tailCytoskeletal remodelingDendrite morphogenesisTyr-783Kinase domainPhosphorylated regionAbl familyΒ1 tailArg kinaseCell motility
2013
Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6
Gao J, Ha BH, Lou HJ, Morse EM, Zhang R, Calderwood DA, Turk BE, Boggon TJ. Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6. PLOS ONE 2013, 8: e77818. PMID: 24204982, PMCID: PMC3810134, DOI: 10.1371/journal.pone.0077818.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCatalytic DomainCrystallizationCrystallography, X-RayHEK293 CellsHumansIndolesModels, MolecularMolecular Sequence DataP21-Activated KinasesPeptide FragmentsPhosphorylationProtein ConformationPyrazolesPyrrolesSequence Homology, Amino AcidSignal TransductionSubstrate SpecificitySunitinibConceptsP21-activated kinaseCo-crystal structureRho family small GTPasesPeptide substrate specificityATP-competitive inhibitorsStructure-function relationshipsSmall GTPasesPAK familyCatalytic domainMelanoma-associated mutationsSubstrate specificityInhibitor specificityPAK6Receptor signalingPF-3758309Important effectors
2009
Filamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix Tension
Gehler S, Baldassarre M, Lad Y, Leight JL, Wozniak MA, Riching KM, Eliceiri KW, Weaver VM, Calderwood DA, Keely PJ. Filamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix Tension. Molecular Biology Of The Cell 2009, 20: 3224-3238. PMID: 19458194, PMCID: PMC2710838, DOI: 10.1091/mbc.e08-12-1186.Peer-Reviewed Original ResearchConceptsFilamin AExtracellular matrixProtein filamin AHigh-density gelsMatrix tensionCollagen gelsMechanosensitive complexBreast epithelial cellsCellular contractilityMatrix stiffnessMorphogenesisEpithelial cell responsesCell typesDuctal morphogenesisEpithelial cellsCellsCollagen matrixGel contractionActinCollagen remodelingIntegrinsCell responsesCollagen fibrilsRemodelingGel
2003
Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling
Calderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 2272-2277. PMID: 12606711, PMCID: PMC151330, DOI: 10.1073/pnas.262791999.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmino Acid SequenceAnimalsCHO CellsCricetinaeCytoplasmDatabases as TopicDNADose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelGlutathione TransferaseHumansIntegrin beta ChainsIntegrinsMiceModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedMutationPhosphorylationPhosphotyrosinePrecipitin TestsProtein BindingProtein ConformationProtein Structure, TertiaryRecombinant Fusion ProteinsRecombinant ProteinsSequence Homology, Amino AcidSignal TransductionTransfectionTyrosineConceptsIntegrin beta tailsBeta tailsPTB domainIntegrin tailsDok-1Heterodimeric integrin adhesion receptorsBiological functionsDomain interactionsPTB domain-containing proteinsDomain-containing proteinsDomain-ligand interactionsPhosphotyrosine-binding (PTB) domainPhosphotyrosine-binding domainCytoplasmic domain interactionsIntegrin-binding proteinsIntegrin adhesion receptorsIntegrin alpha IIbNPXY motifProtein modulesCytoplasmic domainCytoplasmic proteinsAlpha IIbCytoskeletal proteinsCanonical recognition sequenceInteracting residues
2002
The N-terminal SH2 Domains of Syk and ZAP-70 Mediate Phosphotyrosine-independent Binding to Integrin β Cytoplasmic Domains*
Woodside DG, Obergfell A, Talapatra A, Calderwood DA, Shattil SJ, Ginsberg MH. The N-terminal SH2 Domains of Syk and ZAP-70 Mediate Phosphotyrosine-independent Binding to Integrin β Cytoplasmic Domains*. Journal Of Biological Chemistry 2002, 277: 39401-39408. PMID: 12171941, DOI: 10.1074/jbc.m207657200.Peer-Reviewed Original ResearchAmino Acid SequenceAnimalsCHO CellsCricetinaeCytoplasmDose-Response Relationship, DrugEnzyme PrecursorsGenetic VectorsGlutathione TransferaseIntegrin beta ChainsIntracellular Signaling Peptides and ProteinsKineticsModels, GeneticMolecular Sequence DataNickelPhosphorylationPhosphotyrosinePrecipitin TestsProtein BindingProtein Structure, TertiaryProtein-Tyrosine KinasesRecombinant Fusion ProteinsSequence Homology, Amino AcidSrc Homology DomainsSurface Plasmon ResonanceSyk KinaseTime FactorsZAP-70 Protein-Tyrosine Kinase