Featured Publications
Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway
Ganga AK, Kennedy MC, Oguchi ME, Gray S, Oliver KE, Knight TA, De La Cruz EM, Homma Y, Fukuda M, Breslow DK. Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Current Biology 2021, 31: 2895-2905.e7. PMID: 33989527, PMCID: PMC8282722, DOI: 10.1016/j.cub.2021.04.075.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCell MembraneCentriolesCiliaDogsHumansHydrolysisMiceNuclear ProteinsRab GTP-Binding ProteinsSignal TransductionConceptsIntracellular pathwaysCiliary membrane biogenesisCiliary membrane formationIntracellular ciliogenesis pathwayMDCK cellsPolarized MDCK cellsDistinct molecular requirementsPrimary cilia formExtracellular pathwaysTissue-specific mannerCiliary pocketGTPase domainMembrane biogenesisDistinct functional propertiesCiliary vesiclesAssembly intermediatesCilia formSignal transductionGTP bindingMother centriolePrimary ciliaCiliogenesisDivergent residuesIntracellular ciliaRab34Mechanism and Regulation of Centriole and Cilium Biogenesis
Breslow DK, Holland AJ. Mechanism and Regulation of Centriole and Cilium Biogenesis. Annual Review Of Biochemistry 2019, 88: 1-34. PMID: 30601682, PMCID: PMC6588485, DOI: 10.1146/annurev-biochem-013118-111153.ChaptersMeSH KeywordsAnimalsCell CycleCentriolesCiliaCiliopathiesEukaryotaHumansMitosisOrganelle BiogenesisSignal TransductionConceptsInterphase microtubule cytoskeletonMicrotubule-based organellesBiogenesis of centriolesMost animal cellsCore of centrosomesFormation of ciliaNine-fold symmetryCilia biologyCilia biogenesisCellular signalingMicrotubule cytoskeletonAnimal cellsMitotic spindleBasal bodiesHuman diseasesCentriolesBiogenesisRegulatory controlCentral roleCiliaExciting avenuesCentrosomesCytoskeletonOrganellesSignalingA CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies
Breslow DK, Hoogendoorn S, Kopp AR, Morgens DW, Vu BK, Kennedy MC, Han K, Li A, Hess GT, Bassik MC, Chen JK, Nachury MV. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nature Genetics 2018, 50: 460-471. PMID: 29459677, PMCID: PMC5862771, DOI: 10.1038/s41588-018-0054-7.Peer-Reviewed Original ResearchConceptsFunctional genomic screensGenome-wide CRISPRCiliary functionHedgehog-responsive cellsCiliary signalingΕ-tubulinProtein complexesGenomic screenEmbryonic developmentGene disruptionPrimary ciliaΔ-tubulinNovel componentCiliopathiesCRISPRCiliary structureUnbiased toolHedgehogUnifying causeScreenGenesSignalingCiliaSystematic analysisPathway
2015
Chapter 11 Analysis of soluble protein entry into primary cilia using semipermeabilized cells
Breslow DK, Nachury MV. Chapter 11 Analysis of soluble protein entry into primary cilia using semipermeabilized cells. Methods In Cell Biology 2015, 127: 203-221. PMID: 25837393, PMCID: PMC4797650, DOI: 10.1016/bs.mcb.2014.12.006.BooksConceptsSemipermeabilized cellsProtein entriesPrimary ciliaCiliary diffusion barrierNuclear pore complexPrimary cilia functionPore complexMammalian cellsSignal transductionSpecialized compartmentsCilia functionPlasma membraneCiliary membraneIntact cellsExperimental perturbationsCell surfaceProtein exchangeCiliaVitro systemAxon initial segmentMechanistic analysisChapter 11 AnalysisUnique resourceCapture assayCells
2013
Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond
Breslow DK. Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond. Cold Spring Harbor Perspectives In Biology 2013, 5: a013326. PMID: 23545423, PMCID: PMC3683901, DOI: 10.1101/cshperspect.a013326.BooksMeSH KeywordsAnimalsCell MembraneCeramidesEndoplasmic ReticulumHomeostasisHumansPhosphatidylinositolsSaccharomyces cerevisiaeSignal TransductionSphingolipidsConceptsSphingolipid homeostasisEndoplasmic reticulumEssential cellular rolesSphingolipid metabolismCritical regulatory sitePotent signaling moleculesCellular rolesFamily proteinsSphingolipid productionSignaling moleculesRegulatory sitesPhysiologic cuesBasic biochemistryComplex glycosphingolipidsMembrane functionHomeostasisDiverse groupSphingolipidsNew insightsReticulumMetabolic demandsDetailed understandingMetabolismStructural componentsInitial synthesisSingle molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors
Ye F, Breslow DK, Koslover EF, Spakowitz AJ, Nelson WJ, Nachury MV. Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. ELife 2013, 2: e00654. PMID: 23930224, PMCID: PMC3736543, DOI: 10.7554/elife.00654.Peer-Reviewed Original ResearchMeSH KeywordsCiliaDiffusionMembrane ProteinsProtein TransportReceptors, Cell SurfaceSignal TransductionConceptsCiliary membrane proteinsIntraflagellar transportIFT trainsMembrane proteinsMembrane protein diffusionSingle-molecule imagingSomatostatin receptor 3Active transportPrimary ciliaCiliary membraneMolecule imagingProtein diffusionDynamic organizationDirectional movementReceptor 3ProteinCiliaPossible roleStatistical subtractionSingle moleculesMajor roleSmoothenedSMOSSTR3Diffusive behavior
2011
A Novel Protein LZTFL1 Regulates Ciliary Trafficking of the BBSome and Smoothened
Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV, Sheffield VC. A Novel Protein LZTFL1 Regulates Ciliary Trafficking of the BBSome and Smoothened. PLOS Genetics 2011, 7: e1002358. PMID: 22072986, PMCID: PMC3207910, DOI: 10.1371/journal.pgen.1002358.Peer-Reviewed Original ResearchConceptsCiliary traffickingBBS proteinsBardet-Biedl syndrome proteinsLeucine zipper transcriptionHedgehog signal transducerG protein-coupled receptorsProtein-coupled receptorsCiliary entryBBSome subunitsProtein traffickingSyndrome proteinProtein complexesCellular processesNovel proteinPrimary ciliaHedgehog signalingSignal transducerBBSomeImportant regulatorTraffickingLZTFL1Ciliary functionProteinBBS3CiliaPrimary Cilia: How to Keep the Riff-Raff in the Plasma Membrane
Breslow DK, Nachury MV. Primary Cilia: How to Keep the Riff-Raff in the Plasma Membrane. Current Biology 2011, 21: r434-r436. PMID: 21640903, DOI: 10.1016/j.cub.2011.04.039.Commentaries, Editorials and Letters
2010
Membranes in Balance: Mechanisms of Sphingolipid Homeostasis
Breslow DK, Weissman JS. Membranes in Balance: Mechanisms of Sphingolipid Homeostasis. Molecular Cell 2010, 40: 267-279. PMID: 20965421, PMCID: PMC2987644, DOI: 10.1016/j.molcel.2010.10.005.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsBiological TransportCell MembraneGlycerophospholipidsHomeostasisHumansModels, BiologicalSignal TransductionSphingolipidsSterolsConceptsSphingolipid homeostasisCell biologyEukaryotic cell biologyKey cellular rolesComplex membrane compositionCellular rolesSecretory pathwaySphingolipid biosynthesisEnzymatic machineryPhysiologic cuesSphingolipid metabolismMembrane compositionSphingolipidsBiologyNew insightsHomeostasisStructural componentsMembraneCellsBiosynthesisDefining featureMachineryGlycerolipidsEnzymeImproved understanding