Temporal Trend of Age at Diagnosis in Hypertrophic Cardiomyopathy
Canepa M, Fumagalli C, Tini G, Vincent-Tompkins J, Day SM, Ashley EA, Mazzarotto F, Ware JS, Michels M, Jacoby D, Ho CY, Olivotto I, Investigators T. Temporal Trend of Age at Diagnosis in Hypertrophic Cardiomyopathy. Circulation Heart Failure 2020, 13: e007230-e007230. PMID: 32894986, PMCID: PMC7497482, DOI: 10.1161/circheartfailure.120.007230.Peer-Reviewed Original ResearchConceptsHypertrophic cardiomyopathyHCM diagnosisSarcomeric Human Cardiomyopathy RegistryGenetic testingHeart failure symptomsObstructive hypertrophic cardiomyopathyNon-US sitesEra of diagnosisLikely pathogenic variantsClinical characteristicsOlder patientsFamilial hypertrophic cardiomyopathyHCM populationVentricular hypertrophyFemale ratioFailure symptomsSporadic diseasePathogenic variantsAdvanced diagnostic toolsDiagnosisTemporal trendsStable maleMild phenotypeAgePatientsSpatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients with Hypertrophic Cardiomyopathy
Helms AS, Thompson AD, Glazier AA, Hafeez N, Kabani S, Rodriguez J, Yob JM, Woolcock H, Mazzarotto F, Lakdawala NK, Wittekind SG, Pereira AC, Jacoby DL, Colan SD, Ashley EA, Saberi S, Ware JS, Ingles J, Semsarian C, Michels M, Olivotto I, Ho CY, Day SM. Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients with Hypertrophic Cardiomyopathy. Circulation Genomic And Precision Medicine 2020, 13: 396-405. PMID: 32841044, PMCID: PMC7676622, DOI: 10.1161/circgen.120.002929.Peer-Reviewed Original ResearchConceptsHypertrophic cardiomyopathyPathogenic variantsClinical outcomesSarcomeric Human Cardiomyopathy RegistryTruncating variantsHypertrophic cardiomyopathy cohortAdverse event ratesSimilar clinical severityDetailed genotype-phenotype correlationRat ventricular myocytesC10 domainCardiomyopathy cohortGenotype-phenotype correlationMyofilament incorporationFamilial hypertrophic cardiomyopathyClinical severityGenotyped patientsCommon causeMorphological severityTime-event analysisCardiac morphologyPatientsLoss of functionCardiomyopathyVentricular myocytesMyosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy
Toepfer CN, Garfinkel AC, Venturini G, Wakimoto H, Repetti G, Alamo L, Sharma A, Agarwal R, Ewoldt JF, Cloonan P, Letendre J, Lun M, Olivotto I, Colan S, Ashley E, Jacoby D, Michels M, Redwood CS, Watkins HC, Day SM, Staples JF, Padrón R, Chopra A, Ho CY, Chen CS, Pereira AC, Seidman JG, Seidman CE. Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy. Circulation 2020, 141: 828-842. PMID: 31983222, PMCID: PMC7077965, DOI: 10.1161/circulationaha.119.042339.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAnimalsCardiac MyosinsCardiomyopathy, HypertrophicCells, CulturedEnergy MetabolismHumansInduced Pluripotent Stem CellsMiceMolecular Dynamics SimulationMuscle RelaxationMutation, MissenseMyocardial ContractionMyocytes, CardiacMyosin Heavy ChainsProtein ConformationSarcomeresConceptsProportion of myosinAdverse clinical outcomesHypertrophic cardiomyopathyHeart failureUnknown clinical significanceClinical outcomesClinical significancePathogenic variantsSarcomere functionSarcomere protein genesPathogenic missense variantsMyosin missense mutationsHemodynamic requirementsImpaired relaxationContractile abnormalitiesHealthy rodentsHypertrophic remodelingHemodynamic demandsPatient riskPoor relaxationCardiomyocyte contractilityHeart functionMyosin ATPase activityPatientsAllosteric modulators