2015
Mapping Brain Activity in Response to Taste Stimulation
Small D, Faurion A. Mapping Brain Activity in Response to Taste Stimulation. 2015, 775-794. DOI: 10.1002/9781118971758.ch35.Peer-Reviewed Original Research
2014
The neural signature of satiation is associated with ghrelin response and triglyceride metabolism
Sun X, Veldhuizen MG, Wray AE, de Araujo IE, Sherwin RS, Sinha R, Small DM. The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiology & Behavior 2014, 136: 63-73. PMID: 24732416, PMCID: PMC4195817, DOI: 10.1016/j.physbeh.2014.04.017.Peer-Reviewed Original ResearchConceptsPalatable foodMeal terminationBrain responsesAd libitum mealPost-prandial reductionMedial orbitofrontal cortexDorsolateral prefrontal cortexGhrelin responseAcute changesFree fatty acidsPeripheral signalsTriglyceride metabolismBrain regionsBrain circuitsOrbitofrontal cortexPrefrontal cortexAmount of foodGhrelinMidbrainMilkshakeTriglyceridesCortexFatty acidsEnergy storesGreater attenuation
2012
Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger
Nolan-Poupart S, Veldhuizen MG, Geha P, Small DM. Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite 2012, 60: 168-174. PMID: 23064394, PMCID: PMC3526000, DOI: 10.1016/j.appet.2012.09.032.Peer-Reviewed Original ResearchConceptsAbsence of hungerFunctional magnetic resonance imagingSubsequent intakeRatings of hungerPeriaqueductal gray regionMidbrain responsesMagnetic resonance imagingKey reward regionsPalatable milkshakeSignificant positive associationPalatable foodResonance imagingInsular responsesOrbitofrontal cortexNeural circuitsGreater intakeMilkshake consumptionIntakeReward regionsBrain responsesEnhanced responseMilkshakePositive associationMidbrainGray regionFlavor is in the brain
Small DM. Flavor is in the brain. Physiology & Behavior 2012, 107: 540-552. PMID: 22542991, DOI: 10.1016/j.physbeh.2012.04.011.Peer-Reviewed Original ResearchAcute stress potentiates brain response to milkshake as a function of body weight and chronic stress
Rudenga KJ, Sinha R, Small DM. Acute stress potentiates brain response to milkshake as a function of body weight and chronic stress. International Journal Of Obesity 2012, 37: 309-316. PMID: 22430303, PMCID: PMC3381866, DOI: 10.1038/ijo.2012.39.Peer-Reviewed Original ResearchConceptsBody mass indexFunctional magnetic resonance imagingChronic stressOrbitofrontal cortexRight amygdalaBody weightPalatable foodAcute stressBasal cortisol levelsBrain responsesAmygdala responseMagnetic resonance imagingStress-related eatingMilkshake receiptPalatable milkshakeObese womenOverweight womenMass indexRight amygdala responseOFC responsesPotentiates responsesCortisol levelsLeft amygdalaResonance imagingVentral striatum
2011
Youth at Risk for Obesity Show Greater Activation of Striatal and Somatosensory Regions to Food
Stice E, Yokum S, Burger KS, Epstein LH, Small DM. Youth at Risk for Obesity Show Greater Activation of Striatal and Somatosensory Regions to Food. Journal Of Neuroscience 2011, 31: 4360-4366. PMID: 21430137, PMCID: PMC3260083, DOI: 10.1523/jneurosci.6604-10.2011.Peer-Reviewed Original ResearchConceptsNormal weight humansObese humansStriatal responsesFood intakeOrbitofrontal cortexDopamine signalingWeight gainInitial vulnerability factorsGenetic riskStriatal D2 receptorsMonetary rewardsNormal-weight adolescentsPalatable food intakeD2 receptor densityD2 receptorsHigh-risk youthParietal operculumReceptor densitySomatosensory regionsPalatable foodFoods contributesFrontal operculumReward circuitryReduced dopamineObesity
2009
Neural correlates of evaluative compared with passive tasting
Bender G, Veldhuizen MG, Meltzer JA, Gitelman DR, Small DM. Neural correlates of evaluative compared with passive tasting. European Journal Of Neuroscience 2009, 30: 327-338. PMID: 19614981, PMCID: PMC2776645, DOI: 10.1111/j.1460-9568.2009.06819.x.Peer-Reviewed Original ResearchConceptsLateral orbitofrontal cortexOrbitofrontal cortexPrimary taste cortexLeft lateral orbitofrontal cortexFunctional magnetic resonanceTasteless solutionMaximal responseTaste cortexFunction of taskCortical representationGustatory informationAnterior insulaVentral regionNeural responsesPreferential connectivityAmygdalaNeural correlatesCortexInsulaNeural encodingSubjectsStimulus presenceMagnetic resonanceResponseEarly relayThe Role of the Parabrachial Nucleus in Taste Processing and Feeding
Scott TR, Small DM. The Role of the Parabrachial Nucleus in Taste Processing and Feeding. Annals Of The New York Academy Of Sciences 2009, 1170: 372-377. PMID: 19686161, DOI: 10.1111/j.1749-6632.2009.03906.x.Peer-Reviewed Original ResearchConceptsParabrachial nucleusVentral forebrainIntegration of tasteSolitary tractForebrain projectionsVisceral sensationOrbitofrontal cortexFeeding behaviorTaste processingHedonic assessmentRodentsCortexForebrainSensory informationActivity parallelPrimatesFood selectionTaste activityNTSEarly recordingsFeedingThalamusReflexSubnucleiHedonic information
2008
Modulation of the spatial attention network by incentives in healthy aging and mild cognitive impairment
Bagurdes LA, Mesulam MM, Gitelman DR, Weintraub S, Small DM. Modulation of the spatial attention network by incentives in healthy aging and mild cognitive impairment. Neuropsychologia 2008, 46: 2943-2948. PMID: 18602410, DOI: 10.1016/j.neuropsychologia.2008.06.005.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAgingAnalysis of VarianceAttentionCase-Control StudiesCerebral CortexCognition DisordersDementiaDiscrimination, PsychologicalHumansLimbic SystemMagnetic Resonance ImagingMatched-Pair AnalysisMiddle AgedMotivationReaction TimeReference ValuesRewardSeverity of Illness IndexSpace PerceptionConceptsSpatial attentionSpatial attention networkAttentional shiftsMild cognitive impairmentAttention networkHealthy agingOrbitofrontal cortexCovert attention taskSelective spatial attentionCognitive impairmentUnderlying neural circuitryAD-related declineAttention taskSelective attentionEmotional contentOFC activationPCC activationSpatial cuesSecondary reinforcerInfluence of incentivesPosterior cingulateNeural circuitryNovel eventsCurrent experimentsBehavioral effectsFlavor and the Formation of Category-Specific Processing in Olfaction
Small D. Flavor and the Formation of Category-Specific Processing in Olfaction. Chemosensory Perception 2008, 1: 136-146. DOI: 10.1007/s12078-008-9015-3.Peer-Reviewed Original ResearchCategory-specific processingOral referralAnterior cingulate cortexRolandic operculumCingulate cortexPattern of responseOrbitofrontal cortexUnimodal tasteFlavor perceptReferralBimodal cellsCortexNeural processingFlavor objectsSensory modalitiesMultiple sensory modalitiesOlfactionCellsPerception of flavorInsulaNeuronsOperculumNeural bindingResponseThe Spatial Attention Network Interacts with Limbic and Monoaminergic Systems to Modulate Motivation-Induced Attention Shifts
Mohanty A, Gitelman DR, Small DM, Mesulam MM. The Spatial Attention Network Interacts with Limbic and Monoaminergic Systems to Modulate Motivation-Induced Attention Shifts. Cerebral Cortex 2008, 18: 2604-2613. PMID: 18308706, PMCID: PMC2567423, DOI: 10.1093/cercor/bhn021.Peer-Reviewed Original ResearchConceptsPosterior parietal cortexSpatial attentionPosterior cingulateAttentional targetsSpatial attention paradigmFood-related cuesStrong functional couplingAttentional biasingAttentional resourcesAttentional shiftsMotivational relevanceAttention paradigmCentral cuesAttention shiftsMotivational salienceMotivational valueMotivational informationMotivational stateMotivational needsIntraparietal sulcusOrbitofrontal cortexParietal cortexFood targetsSelective allocationMultiple domains
2007
The Role of the Human Orbitofrontal Cortex in Taste and Flavor Processing
SMALL DM, BENDER G, VELDHUIZEN MG, RUDENGA K, NACHTIGAL D, FELSTED J. The Role of the Human Orbitofrontal Cortex in Taste and Flavor Processing. Annals Of The New York Academy Of Sciences 2007, 1121: 136-151. PMID: 17846155, DOI: 10.1196/annals.1401.002.Peer-Reviewed Original ResearchConceptsHuman orbitofrontal cortexOrbitofrontal cortexSensory inputDistinct sensory inputsMultiple sensory inputsHigher-order gustatory corticesNeural representationFlavor perceptReward valueFlavor processingAffective valueOral somatosensationFood rewardInternal statesPerceptGustatory cortexCortexOrbital cortexRetronasal olfactionProcessingPleasantnessRewardEncodingSomatosensationRepresentationTrying to Detect Taste in a Tasteless Solution: Modulation of Early Gustatory Cortex by Attention to Taste
Veldhuizen MG, Bender G, Constable RT, Small DM. Trying to Detect Taste in a Tasteless Solution: Modulation of Early Gustatory Cortex by Attention to Taste. Chemical Senses 2007, 32: 569-581. PMID: 17495173, DOI: 10.1093/chemse/bjm025.Peer-Reviewed Original Research
2006
The chemical senses
Gottfried J, Small D, Zald D. The chemical senses. 2006, 125-172. DOI: 10.1093/acprof:oso/9780198565741.003.0006.Peer-Reviewed Original Research
2005
Differential Neural Responses Evoked by Orthonasal versus Retronasal Odorant Perception in Humans
Small DM, Gerber JC, Mak YE, Hummel T. Differential Neural Responses Evoked by Orthonasal versus Retronasal Odorant Perception in Humans. Neuron 2005, 47: 593-605. PMID: 16102541, DOI: 10.1016/j.neuron.2005.07.022.Peer-Reviewed Original ResearchConceptsOrbitofrontal cortexCaudolateral orbitofrontal cortexRoute of deliveryInsula/operculumMedial orbitofrontal cortexPerigenual cingulateOral cavityCentral sulcusDifferential neural responsesRetronasal olfactionRetronasal routeBrain responsesNeural responsesNeural recruitmentDifferential activationPreferential activityCortexOdorant perceptionOrthonasalRetronasalDifferential neural recruitmentDeliveryResponseThalamusHippocampusOdor/taste integration and the perception of flavor
Small DM, Prescott J. Odor/taste integration and the perception of flavor. Experimental Brain Research 2005, 166: 345-357. PMID: 16028032, DOI: 10.1007/s00221-005-2376-9.Peer-Reviewed Original ResearchConceptsFlavor perceptionUnitary perceptionCross-modal sensory interactionsSensory inputVentral lateral prefrontal cortexParticular sensory characteristicsLateral prefrontal cortexPosterior parietal cortexMultiple sensory inputsAnterior cingulate cortexPerception of flavorAttentional allocationHeteromodal regionsNeural processesAnterior insulaFlavor processingFrontal operculumOrbitofrontal cortexPrefrontal cortexCingulate cortexFlavor of foodParietal cortexNeurophysiological studiesPerceptionSensory interaction
2004
Experience-Dependent Neural Integration of Taste and Smell in the Human Brain
Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D. Experience-Dependent Neural Integration of Taste and Smell in the Human Brain. Journal Of Neurophysiology 2004, 92: 1892-1903. PMID: 15102894, DOI: 10.1152/jn.00050.2004.Peer-Reviewed Original ResearchConceptsAnterior cingulate cortexPosterior parietal cortexOrbitofrontal cortexCaudal orbitofrontal cortexFrontal operculumPrefrontal cortexParietal cortexFlavor perceptionVentral lateral prefrontal cortexVentral insulaEvent-related fMRIVentrolateral prefrontal cortexLateral prefrontal cortexDistinct sensory inputsAnterior ventral insulaPerception of flavorUnimodal stimuliSuperadditive responsesNeural correlatesBrain responsesNeural responsesFlavor processingNeural suppressionOlfactory deliveryDorsal insulaCrossmodal integration – insights from the chemical senses
Small D. Crossmodal integration – insights from the chemical senses. Trends In Neurosciences 2004, 27: 120-123. PMID: 15046082, DOI: 10.1016/j.tins.2004.01.002.Peer-Reviewed Original ResearchConceptsSuperior temporal sulcusStudy of auditionMultisensory integrationNeural correlatesTemporal sulcusVisual cuesOrbitofrontal cortexAssociation cortexHuman brainCrossmodalChemical sensesCortexAuditionCuesCongruencySomatosensationSulcusSensesCorrelatesOdor detectionFacilitationUnderstandingNew studiesBrain
2003
Dissociation of Neural Representation of Intensity and Affective Valuation in Human Gustation
Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T. Dissociation of Neural Representation of Intensity and Affective Valuation in Human Gustation. Neuron 2003, 39: 701-711. PMID: 12925283, DOI: 10.1016/s0896-6273(03)00467-7.Peer-Reviewed Original Research
1999
Human cortical gustatory areas
Small D, Zald D, Jones-Gotman M, Zatorre R, Pardo J, Frey S, Petrides M. Human cortical gustatory areas. Neuroreport 1999, 10: 7-13. PMID: 10094124, DOI: 10.1097/00001756-199901180-00002.Peer-Reviewed Original Research