2022
mRNA 5′ terminal sequences drive 200-fold differences in expression through effects on synthesis, translation and decay
van den Elzen A, Watson M, Thoreen C. mRNA 5′ terminal sequences drive 200-fold differences in expression through effects on synthesis, translation and decay. PLOS Genetics 2022, 18: e1010532. PMID: 36441824, PMCID: PMC9731452, DOI: 10.1371/journal.pgen.1010532.Peer-Reviewed Original ResearchConceptsTerminal sequenceGene expressionKey post-transcriptional regulatorsTerminal oligopyrimidine motifsCore promoter motifsPost-transcriptional regulatorsPromoter motifsMRNA decayTranslation initiationRegulatory sequencesReporter mRNAEfficient transcriptionLibrary sequencesEndogenous mRNARegulatory potentialNative mRNAHuman cellsTranscriptionMRNAHybrid sequencesSequenceExpressionMotifMRNA expressionTranslation
2017
La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region
Philippe L, Vasseur JJ, Debart F, Thoreen CC. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region. Nucleic Acids Research 2017, 46: gkx1237-. PMID: 29244122, PMCID: PMC5814973, DOI: 10.1093/nar/gkx1237.Peer-Reviewed Original ResearchMeSH KeywordsAutoantigensBase SequenceBinding SitesBinding, CompetitiveCell-Free SystemComputational BiologyEukaryotic Initiation Factor-4FGene Expression RegulationHEK293 CellsHumansMechanistic Target of Rapamycin Complex 1Models, GeneticPolyribosomesProtein BindingProtein BiosynthesisProtein Interaction Domains and MotifsPyrimidinesRibonucleoproteinsRNA, MessengerConceptsTOP mRNA translationAdjacent regulatory regionsMRNA translationCap-binding domainCap structureRegulatory regionsEukaryotic initiation factor 4FMRNA 5' cap structureIntrinsic repressive activityTerminal oligopyrimidine motifsInitiation factor 4FMRNA 5' endsC-terminal halfGrowth-related mRNAsTOP mRNAsRepressive activityTranslation factorsMRNA targetsCoordinated changesGene expressionLARP1Cell growthProtein 1Top sequenceMRNA