Featured Publications
Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement
Hsieh LS, Wen JH, Claycomb K, Huang Y, Harrsch FA, Naegele JR, Hyder F, Buchanan GF, Bordey A. Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement. Nature Communications 2016, 7: 11753. PMID: 27249187, PMCID: PMC4895394, DOI: 10.1038/ncomms11753.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementCognitive DysfunctionDisease Models, AnimalFemaleGene Expression RegulationGenes, ReporterGreen Fluorescent ProteinsHumansMaleMalformations of Cortical DevelopmentMiceNeuronsPrefrontal CortexSeizuresSignal TransductionSirolimusTOR Serine-Threonine KinasesWhite MatterConceptsFocal cortical dysplasiaCortical dysplasiaType II focal cortical dysplasiaWhite matter heterotopiasLayer 2/3 neuronsLife-long treatmentTonic-clonic seizuresNormal survival rateMedial prefrontal cortexLocal malformationsConvulsive seizuresPharmacoresistant epilepsySeizure activitySeizure generationSeizure occurrenceCommon causeCortical developmentMurine modelNeurocognitive impairmentSurvival rateSeizuresRapamycin withdrawalPrefrontal cortexMTOR activityRapamycin treatment
2015
Activating the translational repressor 4E-BP or reducing S6K-GSK3β activity prevents accelerated axon growth induced by hyperactive mTOR in vivo
Gong X, Zhang L, Huang T, Lin TV, Miyares L, Wen J, Hsieh L, Bordey A. Activating the translational repressor 4E-BP or reducing S6K-GSK3β activity prevents accelerated axon growth induced by hyperactive mTOR in vivo. Human Molecular Genetics 2015, 24: 5746-5758. PMID: 26220974, PMCID: PMC4581604, DOI: 10.1093/hmg/ddv295.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsAxonsCarrier ProteinsCell Cycle ProteinsCell Growth ProcessesEukaryotic Initiation FactorsFemaleGene Expression RegulationGlycogen Synthase Kinase 3Glycogen Synthase Kinase 3 betaMaleMechanistic Target of Rapamycin Complex 1MiceMultiprotein ComplexesPhosphoproteinsRibosomal Protein S6 Kinases, 90-kDaSignal TransductionTOR Serine-Threonine KinasesConceptsAxon growthNew therapeutic optionsMultiple axon formationTherapeutic optionsHippocampal neuronsHyperactive mTORNeurological disordersUtero electroporationAxonal connectivityGSK3β activityTranslational repressor 4E-BPEukaryotic initiation factor 4EMTOR complex 1Translational targetsInitiation factor 4EHyperactive mTORC1VivoDownstream effectorsGSK3βAxon formationLong-range connectivityDominant negative mutantLithium chlorideMTORopathiesMTORC1
2014
MEK-ERK1/2-Dependent FLNA Overexpression Promotes Abnormal Dendritic Patterning in Tuberous Sclerosis Independent of mTOR
Zhang L, Bartley CM, Gong X, Hsieh LS, Lin TV, Feliciano DM, Bordey A. MEK-ERK1/2-Dependent FLNA Overexpression Promotes Abnormal Dendritic Patterning in Tuberous Sclerosis Independent of mTOR. Neuron 2014, 84: 78-91. PMID: 25277454, PMCID: PMC4185153, DOI: 10.1016/j.neuron.2014.09.009.Peer-Reviewed Original ResearchConceptsDendritic complexityFLNA overexpressionDendritic abnormalitiesFLNA expressionDendritic patterningComplex dendritic arborsWild-type neuronsFilamin ADendritic arborsERK1/2-dependent mannerDendritic defectsNeurological defectsMEK-ERK1/2NeuronsMTOR activityNeurodevelopmental disordersNeurodevelopmental diseasesProtein filamin AAbnormalitiesMTOROverexpressionSelective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model
Lozovaya N, Gataullina S, Tsintsadze T, Tsintsadze V, Pallesi-Pocachard E, Minlebaev M, Goriounova NA, Buhler E, Watrin F, Shityakov S, Becker AJ, Bordey A, Milh M, Scavarda D, Bulteau C, Dorfmuller G, Delalande O, Represa A, Cardoso C, Dulac O, Ben-Ari Y, Burnashev N. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nature Communications 2014, 5: 4563. PMID: 25081057, PMCID: PMC4143949, DOI: 10.1038/ncomms5563.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnticonvulsantsDisease Models, AnimalElectroencephalographyEpilepsyGene Expression RegulationHeterozygoteHumansMaleMiceMice, TransgenicMicrotomyNeocortexPatch-Clamp TechniquesPyrazolesQuinolonesReceptors, N-Methyl-D-AspartateSignal TransductionTissue Culture TechniquesTOR Serine-Threonine KinasesTuberous SclerosisTuberous Sclerosis Complex 1 ProteinTumor Suppressor ProteinsConceptsN-methyl-D-aspartate receptorsTuberous sclerosis complexGluN2C expressionSpiny stellate cellsEarly postnatal lifeGluN2C/DPromising molecular targetBlock seizuresMTOR-dependent mannerSurgical resectionCortical tubersEarly epilepsyUnprovoked seizuresPharmacoresistant epilepsyTSC patientsSeizure generationBrain malformationsFunctional upregulationMurine modelStellate cellsPostnatal lifeRecurrent excitationTumor suppressor geneEpilepsySeizures
2010
MicroRNA miR‐137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb‐1
Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng Z, Luo Y, Peng J, Bordey A, Jin P, Zhao X. MicroRNA miR‐137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb‐1. Stem Cells 2010, 28: 1060-1070. PMID: 20506192, PMCID: PMC3140955, DOI: 10.1002/stem.431.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell DifferentiationCells, CulturedDendritesGene Expression RegulationMiceMice, Inbred C57BLMicroRNAsNeuronsPhenotypeProtein BiosynthesisUbiquitin-Protein LigasesConceptsNeuronal maturationMiR-137Dendritic morphogenesisSpine developmentNovel miRNA-mediated mechanismCultured primary neuronsMiR-137 overexpressionConserved target sitesMiR-137 targetsBrain-enriched microRNAYoung neuronsMicroRNA miR-137Phenotypic maturationPrimary neuronsAxonal growthMiRNA-mediated mechanismMIB1Mind bomb-1NeuronsMessenger RNAMaturationOpposite effectOverexpressionMicroRNAsNeurodevelopment
2005
Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors
Liu X, Wang Q, Haydar TF, Bordey A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nature Neuroscience 2005, 8: 1179-1187. PMID: 16116450, PMCID: PMC1380263, DOI: 10.1038/nn1522.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBotulinum ToxinsBromodeoxyuridineCadmiumCell CountCell ProliferationChelating AgentsCyclooxygenase InhibitorsDose-Response Relationship, DrugDose-Response Relationship, RadiationDrug InteractionsEgtazic AcidElectric StimulationEnzyme InhibitorsGABA AntagonistsGamma-Aminobutyric AcidGene Expression RegulationGlial Fibrillary Acidic ProteinGreen Fluorescent ProteinsImmunohistochemistryIn Vitro TechniquesLateral VentriclesMeclofenamic AcidMembrane PotentialsMiceMice, TransgenicNeuronsNickelPatch-Clamp TechniquesPotassiumSodium Channel BlockersSpider VenomsStem CellsTetrodotoxinConceptsPostnatal subventricular zoneGFAP-expressing cellsSubventricular zoneCell cycleGABAA receptorsStem cellsNeuroblastsProgenitorsGlial fibrillary acidic proteinSVZ cellsGABAA receptor currentsGABAA receptor activationFibrillary acidic proteinReceptor activationCellsProliferationGABA releaseMouse slicesLocal cuesAcidic proteinReceptor currentsSpontaneous depolarizationsGFAPGABAReceptors