Duy Phan, PhD
About
Biography
Duy is an MD/PhD student at Yale interested in functional genomics, developmental neurobiology, and pediatric neurosurgery. Duy previously majored in neuroscience at Johns Hopkins University, where he was a Goldwater Scholar and Woodrow Wilson Research Fellow. His NIH F30-funded PhD work, co-mentored by Kristopher Kahle and Nenad Sestan, focused on understanding the molecular genetic mechanisms of developmental brain disorders using unbiased functional genomic approaches in human patients paired with hypothesis-driven neurobiology studies in animal models. Duy's works have led to new understanding of genes involved in formation of the brain-cerebrospinal fluid interface and the embryological mechanisms underlying hydrocephalus, the most common reason for brain surgery in children. His findings have led to first-authored publications in Nature Neuroscience and Neuron and contributing author publications in Nature, Nature Medicine, Journal of Cell Biology, JAMA Neurology, and JAMA Pediatrics. Duy's long-term goals are to define the cellular and molecular pathology of nervous system disorders to thereby develop precision medicine approaches for the care of patients with developmental neurocranial malformations.
Google Scholar: https://scholar.google.com/cit...
Pubmed: https://pubmed.ncbi.nlm.nih.go...
Appointments
Departments & Organizations
- Kahle Lab
Education & Training
- PhD
- Yale University School of Medicine, Neuroscience (2021)
- BS
- Johns Hopkins University, Neuroscience (2018)
Research
Overview
Medical Subject Headings (MeSH)
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Murat Günel, MD, FACS, FAHA, FAANS
Anita Huttner, MD
Ellen J. Hoffman, MD, PhD
Francesc Lopez-Giraldez, PhD
Steven Schiff, MD, PhD, FACS
Suel-Kee Kim
Brain
Cerebral Ventricles
Publications
2022
A neural stem cell paradigm of pediatric hydrocephalus
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cerebral Cortex 2022, 33: 4262-4279. PMID: 36097331, PMCID: PMC10110448, DOI: 10.1093/cercor/bhac341.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsPediatric hydrocephalusPrimary treatment strategyOptimal surgical managementDevelopmental brain malformationsAnimal model studiesSurgical managementCerebral ventricleCSF diversionVentricular distentionHydrocephalic childrenTreatment strategiesBrain malformationsNeurodevelopmental disabilitiesGerminal neuroepitheliumHydrocephalusStem cell paradigmNeural stem cell fateRecent human geneticBrain surgeryCSF circulationBrain ventriclesCSF volumeNeuroprogenitor cellsBrain defectsCSF homeostasisCellular recovery after prolonged warm ischaemia of the whole body
Andrijevic D, Vrselja Z, Lysyy T, Zhang S, Skarica M, Spajic A, Dellal D, Thorn SL, Duckrow RB, Ma S, Duy PQ, Isiktas AU, Liang D, Li M, Kim SK, Daniele SG, Banu K, Perincheri S, Menon MC, Huttner A, Sheth KN, Gobeske KT, Tietjen GT, Zaveri HP, Latham SR, Sinusas AJ, Sestan N. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 2022, 608: 405-412. PMID: 35922506, PMCID: PMC9518831, DOI: 10.1038/s41586-022-05016-1.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSingle-nucleus transcriptomic analysesSpecific gene expression patternsCellular recoveryGene expression patternsCellular processesMammalian cellsTranscriptomic analysisLarge mammalsExpression patternsCellular repair processesCell deathComprehensive resourceUnderappreciated potentialPhysiological challengesTissue integrityRepair processSpecific changesPorcine brainMammalsOrgansMultiple organsMolecular genetics of human developmental neurocranial anomalies: towards “precision surgery”
Duy PQ, Timberlake AT, Lifton RP, Kahle KT. Molecular genetics of human developmental neurocranial anomalies: towards “precision surgery”. Cerebral Cortex 2022, 33: 2912-2918. PMID: 35739418, PMCID: PMC10016031, DOI: 10.1093/cercor/bhac249.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsFuture clinical trialsSurgical treatmentClinical trialsCongenital hydrocephalusWhole-exome sequencing studiesDisease classification systemDevelopmental anomaliesNeuropsychiatric diseasesNonsyndromic craniosynostosisGenetic counselingPrecision surgeryHuman brainNovel disease genesClassification systemMolecular nomenclatureSequencing studiesHydrocephalusSurgeryPathogenesisTherapyMolecular geneticsPrognosticationDiseaseTrialsBrainRare pathogenic variants in WNK3 cause X-linked intellectual disability
Küry S, Zhang J, Besnard T, Caro-Llopis A, Zeng X, Robert SM, Josiah SS, Kiziltug E, Denommé-Pichon AS, Cogné B, Kundishora AJ, Hao LT, Li H, Stevenson RE, Louie RJ, Deb W, Torti E, Vignard V, McWalter K, Raymond FL, Rajabi F, Ranza E, Grozeva D, Coury SA, Blanc X, Brischoux-Boucher E, Keren B, Õunap K, Reinson K, Ilves P, Wentzensen IM, Barr EE, Guihard SH, Charles P, Seaby EG, Monaghan KG, Rio M, van Bever Y, van Slegtenhorst M, Chung WK, Wilson A, Quinquis D, Bréhéret F, Retterer K, Lindenbaum P, Scalais E, Rhodes L, Stouffs K, Pereira EM, Berger SM, Milla SS, Jaykumar AB, Cobb MH, Panchagnula S, Duy PQ, Vincent M, Mercier S, Gilbert-Dussardier B, Le Guillou X, Audebert-Bellanger S, Odent S, Schmitt S, Boisseau P, Bonneau D, Toutain A, Colin E, Pasquier L, Redon R, Bouman A, Rosenfeld JA, Friez MJ, Pérez-Peña H, Akhtar Rizvi SR, Haider S, Antonarakis SE, Schwartz CE, Martínez F, Bézieau S, Kahle KT, Isidor B. Rare pathogenic variants in WNK3 cause X-linked intellectual disability. Genetics In Medicine 2022, 24: 1941-1951. PMID: 35678782, DOI: 10.1016/j.gim.2022.05.009.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsPathogenic missense variantsMissense variantsIntellectual disabilityCation-chloride cotransportersGenome sequenceCatalytic domainInhibitory phosphorylationStructural brain abnormalitiesStructural brain defectsRare pathogenic variantsLarge familyWNK3Synaptic inhibitionCotransporter KCC2Brain abnormalitiesRare formPathogenic mechanismsDifferent familiesSporadic formsPathogenic variantsBrain defectsUnrelated familiesAffected individualsKCC2EpilepsyAngiographic Pulse Wave Coherence in the Human Brain
Koch MJ, Duy PQ, Grannan BL, Patel AB, Raymond SB, Agarwalla PK, Kahle KT, Butler WE. Angiographic Pulse Wave Coherence in the Human Brain. Frontiers In Bioengineering And Biotechnology 2022, 10: 873530. PMID: 35592552, PMCID: PMC9110661, DOI: 10.3389/fbioe.2022.873530.Peer-Reviewed Original ResearchCitationsAltmetricConceptsCerebral angiogramDiagnostic cerebral angiogramIntact human brainHuman brainRigid craniumPathophysiologic disturbancesArterial anatomyVenous bloodStroke volumeArterial bloodCardiac ratePhysiologic mechanismsHuman patientsNeurological pathologiesEquivalent volumePulse waveBrainAngiogramsCardiac cycleBloodFluoroscopic imagesVolume displacementFirst direct evidencePatientsArteryImpaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus
Duy PQ, Weise SC, Marini C, Li XJ, Liang D, Dahl PJ, Ma S, Spajic A, Dong W, Juusola J, Kiziltug E, Kundishora AJ, Koundal S, Pedram MZ, Torres-Fernández LA, Händler K, De Domenico E, Becker M, Ulas T, Juranek SA, Cuevas E, Hao LT, Jux B, Sousa AMM, Liu F, Kim SK, Li M, Yang Y, Takeo Y, Duque A, Nelson-Williams C, Ha Y, Selvaganesan K, Robert SM, Singh AK, Allington G, Furey CG, Timberlake AT, Reeves BC, Smith H, Dunbar A, DeSpenza T, Goto J, Marlier A, Moreno-De-Luca A, Yu X, Butler WE, Carter BS, Lake EMR, Constable RT, Rakic P, Lin H, Deniz E, Benveniste H, Malvankar NS, Estrada-Veras JI, Walsh CA, Alper SL, Schultze JL, Paeschke K, Doetzlhofer A, Wulczyn FG, Jin SC, Lifton RP, Sestan N, Kolanus W, Kahle KT. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nature Neuroscience 2022, 25: 458-473. PMID: 35379995, PMCID: PMC9664907, DOI: 10.1038/s41593-022-01043-3.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCongenital hydrocephalusCerebral ventricular dilatationPrimary defectNeuroepithelial cell differentiationRisk genesCerebrospinal fluid homeostasisWhole-exome sequencingNeuroepithelial stem cellsCortical hypoplasiaReduced neurogenesisVentricular dilatationVentricular enlargementCH mutationsPrenatal hydrocephalusDisease heterogeneityBrain surgeryCSF circulationHydrocephalusGenetic subtypesFluid homeostasisNeuroepithelial cellsNovo mutationsBrain transcriptomicsStem cellsCell differentiationBrain ventricles as windows into brain development and disease
Duy PQ, Rakic P, Alper SL, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. Brain ventricles as windows into brain development and disease. Neuron 2022, 110: 12-15. PMID: 34990576, PMCID: PMC9212067, DOI: 10.1016/j.neuron.2021.12.009.Peer-Reviewed Original ResearchCitationsAltmetric
2021
Genomic approaches to improve the clinical diagnosis and management of patients with congenital hydrocephalus.
Allington G, Duy PQ, Ryou J, Singh A, Kiziltug E, Robert SM, Kundishora AJ, King S, Haider S, Kahle KT, Jin SC. Genomic approaches to improve the clinical diagnosis and management of patients with congenital hydrocephalus. Journal Of Neurosurgery Pediatrics 2021, 29: 168-177. PMID: 34715668, DOI: 10.3171/2021.8.peds21368.Peer-Reviewed Original ResearchCitationsAltmetricConceptsManagement of patientsCongenital hydrocephalusFuture clinical trialsCongenital brain disordersOutcome prognosticationUnderlying pathogenesisClinical trialsCurative strategiesTreatment stratificationIncomplete clearanceDiagnostic adjunctPatient benefitClinical practiceBrain disordersBrain ventriclesClinical diagnosisGenetic counselingHuman genetic studiesHydrocephalusPatientsPathogenesisNeurosurgical communitySubsequent enlargementRecent findingsMolecular nomenclaturePTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets
DeSpenza T, Carlson M, Panchagnula S, Robert S, Duy PQ, Mermin-Bunnell N, Reeves BC, Kundishora A, Elsamadicy AA, Smith H, Ocken J, Alper SL, Jin SC, Hoffman EJ, Kahle KT. PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends In Neurosciences 2021, 44: 961-976. PMID: 34625286, PMCID: PMC8692171, DOI: 10.1016/j.tins.2021.08.007.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsDevelopmental pleiotropyPTEN-PI3KMTOR pathwayMolecular pathophysiologyPTEN mutationsMolecular similarityTherapeutic targetCommon underlying mechanismNeurodevelopmental disordersUnderlying mechanismTherapeutic promisePleiotropyBiologyPhenotypicMutationsLimited understandingPathwayCommon neurodevelopmental disorderAutism spectrum disorderSimilarityTargetDIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease
Kundishora AJ, Peters ST, Pinard A, Duran D, Panchagnula S, Barak T, Miyagishima DF, Dong W, Smith H, Ocken J, Dunbar A, Nelson-Williams C, Haider S, Walker RL, Li B, Zhao H, Thumkeo D, Marlier A, Duy PQ, Diab NS, Reeves BC, Robert SM, Sujijantarat N, Stratman AN, Chen YH, Zhao S, Roszko I, Lu Q, Zhang B, Mane S, Castaldi C, López-Giráldez F, Knight JR, Bamshad MJ, Nickerson DA, Geschwind DH, Chen SL, Storm PB, Diluna ML, Matouk CC, Orbach DB, Alper SL, Smith ER, Lifton RP, Gunel M, Milewicz DM, Jin SC, Kahle KT. DIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease. JAMA Neurology 2021, 78: 993-1003. PMID: 34125151, PMCID: PMC8204259, DOI: 10.1001/jamaneurol.2021.1681.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSporadic moyamoya diseaseMoyamoya diseaseValidation cohortDiscovery cohortIntracranial internal carotid arteryRisk genesBilateral moyamoya diseaseTransfusion-dependent thrombocytopeniaLarger validation cohortNon-East Asian patientsInternal carotid arteryAsian individualsCompound heterozygous variantsNon-East AsiansProgressive vasculopathyTransmitted variantsAsian patientsChildhood strokeMedical recordsCarotid arteryTherapeutic ramificationsMAIN OUTCOMEMouse brain tissuePatientsUS hospitals