Andreas Coppi
Associate Research Scientist (Cardiovascular Medicine)DownloadHi-Res Photo
Cards
Appointments
Cardiovascular Medicine
Primary
Contact Info
About
Titles
Associate Research Scientist (Cardiovascular Medicine)
Appointments
Cardiovascular Medicine
Associate Research ScientistPrimary
Other Departments & Organizations
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Andreas Coppi's published research.
Publications Timeline
A big-picture view of Andreas Coppi's research output by year.
Harlan Krumholz, MD, SM
Wade Schulz, MD, PhD
Rohan Khera, MD, MS
Shu-Xia Li, PhD
Evangelos K. Oikonomou, MD, DPhil
Akiko Iwasaki, PhD
31Publications
1,201Citations
Publications
2024
Artificial intelligence-guided screening of under-recognized cardiomyopathies adapted for point-of-care echocardiography
Oikonomou E, Holste G, Coppi A, Mcnamara R, Nadkarni G, Krumholz H, Wang Z, Miller E, Khera R. Artificial intelligence-guided screening of under-recognized cardiomyopathies adapted for point-of-care echocardiography. European Heart Journal 2024, 45: ehae666.157. DOI: 10.1093/eurheartj/ehae666.157.Peer-Reviewed Original ResearchConceptsConvolutional neural networkMulti-labelState-of-the-art performanceState-of-the-artCustom loss functionDeep learning modelsAI frameworkNeural networkLoss functionAutomated metricsLearning modelsAugmentation approachVideoAcquisition qualityAdvanced protocolsPoint-of-care ultrasonographyImagesTransthoracic echocardiogramClassifierATTR-CMAlgorithmNetworkAI screeningAcquisitionPresence of severe ASCharacterizing the progression of subclinical cardiac amyloidosis through artificial intelligence applied to electrocardiographic images and echocardiograms
Oikonomou E, Sangha V, Coppi A, Krumholz H, Miller E, Khera R. Characterizing the progression of subclinical cardiac amyloidosis through artificial intelligence applied to electrocardiographic images and echocardiograms. European Heart Journal 2024, 45: ehae666.2089. DOI: 10.1093/eurheartj/ehae666.2089.Peer-Reviewed Original ResearchConceptsDiagnosis of ATTR-CMATTR-CMBone scintigraphy scansClinical diagnosisTransthyretin amyloid cardiomyopathyMonths of diagnosisSex-matched controlsElectrocardiographic (ECGIndolent courseCardiac amyloidosisScintigraphy scanAmyloid cardiomyopathyEchocardiographic studiesAI-ECGEchocardiogramEventual diagnosisDetect longitudinal changesConfirmatory testDiagnosisClinical diseasePercentage of individualsLongitudinal changesECGMedianMonthsArtificial intelligence applied to electrocardiographic images for the risk stratification of cancer therapeutics-related cardiac dysfunction
Oikonomou E, Sangha V, Dhingra L, Aminorroaya A, Coppi A, Krumholz H, Baldassarre L, Khera R. Artificial intelligence applied to electrocardiographic images for the risk stratification of cancer therapeutics-related cardiac dysfunction. European Heart Journal 2024, 45: ehae666.3190. DOI: 10.1093/eurheartj/ehae666.3190.Peer-Reviewed Original ResearchConceptsCancer therapeutics-related cardiac dysfunctionImmune checkpoint inhibitorsGlobal longitudinal strainLeft ventricular systolic dysfunctionNon-Hodgkin's lymphomaCardiac dysfunctionAI-ECGNegative control analysesAssociated with higher incidenceVentricular systolic dysfunctionCohort of patientsRisk stratification strategiesCheckpoint inhibitorsTrastuzumab exposureSystolic dysfunctionRisk stratificationBreast cancerRisk biomarkersSecondary outcomesLongitudinal strainStratification strategiesTrastuzumabPatientsHigher incidenceAnthracyclinesAutomated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing
Nargesi A, Adejumo P, Dhingra L, Rosand B, Hengartner A, Coppi A, Benigeri S, Sen S, Ahmad T, Nadkarni G, Lin Z, Ahmad F, Krumholz H, Khera R. Automated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing. JACC Heart Failure 2024 PMID: 39453355, DOI: 10.1016/j.jchf.2024.08.012.Peer-Reviewed Original ResearchCitationsConceptsReduced ejection fractionEjection fractionHeart failureLeft ventricular ejection fractionVentricular ejection fractionYale-New Haven HospitalIdentification of patientsCommunity hospitalIdentification of heart failureLanguage modelNorthwestern MedicineMeasure care qualityQuality of careNew Haven HospitalDeep learning-based natural language processingHFrEFGuideline-directed careDeep learning language modelsMIMIC-IIIDetect HFrEFNatural language processingReclassification improvementHospital dischargePatientsCare qualityArtificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images.
Oikonomou E, Sangha V, Dhingra L, Aminorroaya A, Coppi A, Krumholz H, Baldassarre L, Khera R. Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images. Circulation Cardiovascular Quality And Outcomes 2024 PMID: 39221857, DOI: 10.1161/circoutcomes.124.011504.Peer-Reviewed Original ResearchCitationsAltmetricConceptsCancer therapeutics-related cardiac dysfunctionGlobal longitudinal strainLeft ventricular systolic dysfunctionCardiac dysfunctionBreast cancerNon-Hodgkin lymphoma therapyNon-Hodgkin's lymphomaVentricular systolic dysfunctionAssociated with worse global longitudinal strainRisk stratification strategiesHigh-risk groupMonths post-treatmentPost hoc analysisElectrocardiographic (ECGTrastuzumab exposureLymphoma therapySystolic dysfunctionAI-ECGBefore treatmentRisk biomarkersLongitudinal strainLow riskStratification strategiesHigher incidencePositive screenA Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression
Oikonomou E, Holste G, Yuan N, Coppi A, McNamara R, Haynes N, Vora A, Velazquez E, Li F, Menon V, Kapadia S, Gill T, Nadkarni G, Krumholz H, Wang Z, Ouyang D, Khera R. A Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression. JAMA Cardiology 2024, 9: 534-544. PMID: 38581644, PMCID: PMC10999005, DOI: 10.1001/jamacardio.2024.0595.Peer-Reviewed Original ResearchCitationsAltmetricConceptsCardiac magnetic resonanceAortic valve replacementCardiac magnetic resonance imagingAV VmaxSevere ASAortic stenosisCohort studyPeak aortic valve velocityCohort study of patientsAortic valve velocityCohort of patientsTraditional cardiovascular risk factorsAssociated with faster progressionStudy of patientsCedars-Sinai Medical CenterAssociated with AS developmentCardiovascular risk factorsCardiovascular imaging modalitiesIndependent of ageModerate ASEjection fractionEchocardiographic studiesValve replacementRisk stratificationCardiac structureThe PAX LC Trial: A Decentralized, Phase 2, Randomized, Double-blind Study of Nirmatrelvir/Ritonavir Compared with Placebo/Ritonavir for Long COVID
Krumholz H, Sawano M, Bhattacharjee B, Caraballo C, Khera R, Li S, Herrin J, Coppi A, Holub J, Henriquez Y, Johnson M, Goddard T, Rocco E, Hummel A, Al Mouslmani M, Putrino D, Carr K, Carvajal-Gonzalez S, Charnas L, De Jesus M, Ziegler F, Iwasaki A. The PAX LC Trial: A Decentralized, Phase 2, Randomized, Double-blind Study of Nirmatrelvir/Ritonavir Compared with Placebo/Ritonavir for Long COVID. The American Journal Of Medicine 2024 PMID: 38735354, DOI: 10.1016/j.amjmed.2024.04.030.Peer-Reviewed Original ResearchCitationsAltmetricConceptsLC trialPROMIS-29Participants' homesTargeting viral persistencePlacebo-controlled trialDouble-blind studyElectronic health recordsCore Outcome MeasuresLong COVIDEQ-5D-5LRepeated measures analysisEvidence-based treatmentsPhase 2Double-blindParticipant-centred approachStudy drugPrimary endpointSecondary endpointsCommunity-dwellingHealth recordsHealthcare utilizationContiguous US statesViral persistencePatient groupDrug treatment
2023
Computational phenotypes for patients with opioid-related disorders presenting to the emergency department
Taylor R, Gilson A, Schulz W, Lopez K, Young P, Pandya S, Coppi A, Chartash D, Fiellin D, D’Onofrio G. Computational phenotypes for patients with opioid-related disorders presenting to the emergency department. PLOS ONE 2023, 18: e0291572. PMID: 37713393, PMCID: PMC10503758, DOI: 10.1371/journal.pone.0291572.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSubstance use disordersUse disordersED visitsPatient presentationCarlson comorbidity indexOpioid-related diagnosesOpioid-related disordersOne-year survivalRate of medicationOpioid use disorderElectronic health record dataPatient-oriented outcomesYears of ageHealth record dataChronic substance use disordersED returnComorbidity indexAcute overdoseMedical managementClinical entityRetrospective studyEmergency departmentChronic conditionsInclusion criteriaUnique cohortAn AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
Charkoftaki G, Aalizadeh R, Santos-Neto A, Tan W, Davidson E, Nikolopoulou V, Wang Y, Thompson B, Furnary T, Chen Y, Wunder E, Coppi A, Schulz W, Iwasaki A, Pierce R, Cruz C, Desir G, Kaminski N, Farhadian S, Veselkov K, Datta R, Campbell M, Thomaidis N, Ko A, Thompson D, Vasiliou V. An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model. Human Genomics 2023, 17: 80. PMID: 37641126, PMCID: PMC10463861, DOI: 10.1186/s40246-023-00521-4.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCOVID-19 patientsDisease severityViral outbreaksFuture viral outbreaksLength of hospitalizationIntensive care unitWorse disease prognosisLife-threatening illnessEffective medical interventionsCOVID-19Clinical decision treeGlucuronic acid metabolitesNew potential biomarkersHospitalization lengthCare unitComorbidity dataSerotonin levelsDisease progressionHealthy controlsPatient outcomesDisease prognosisPatient transferPatientsHealthcare resourcesPotential biomarkersSevere aortic stenosis detection by deep learning applied to echocardiography
Holste G, Oikonomou E, Mortazavi B, Coppi A, Faridi K, Miller E, Forrest J, McNamara R, Ohno-Machado L, Yuan N, Gupta A, Ouyang D, Krumholz H, Wang Z, Khera R. Severe aortic stenosis detection by deep learning applied to echocardiography. European Heart Journal 2023, 44: 4592-4604. PMID: 37611002, PMCID: PMC11004929, DOI: 10.1093/eurheartj/ehad456.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and Concepts