2025
Laminar organization of the anterior olfactory nucleus—the interplay between neurogenesis timing and neuroblast migration
Martin-Lopez E, Brennan B, Lefèvre M, Spence N, Han K, Greer C. Laminar organization of the anterior olfactory nucleus—the interplay between neurogenesis timing and neuroblast migration. Frontiers In Neuroscience 2025, 19: 1546397. PMID: 40370659, PMCID: PMC12075217, DOI: 10.3389/fnins.2025.1546397.Peer-Reviewed Original ResearchAON neuronsAnterior olfactory nucleusOlfactory bulbNeuroblast migrationLateral ganglionic eminenceE10 to E18Outer plexiform layerMedial to lateral gradientOlfactory nucleusPregnant miceGanglionic eminenceOlfactory pathwayNeurogenic gradientNeuronal phenotypeMouse embryosOlfactory pedunclePlexiform layerOlfactory systemRadial gliaNeuronsNeurogenesisCtip2PiggyBac transposonThymidine analogImmunohistochemistryLong-Term Engraftment of Cryopreserved Human Neurons for In Vivo Disease Modeling in Neurodegenerative Disease
Marmion D, Deng P, Hiller B, Lewis R, Harms L, Cameron D, Nolta J, Kordower J, Fink K, Wakeman D. Long-Term Engraftment of Cryopreserved Human Neurons for In Vivo Disease Modeling in Neurodegenerative Disease. Biology 2025, 14: 217. PMID: 40001985, PMCID: PMC11852092, DOI: 10.3390/biology14020217.Peer-Reviewed Original ResearchCentral nervous systemStriatum of Sprague-Dawley ratsForebrain GABAergic neuronsLong-term engraftmentHuman induced pluripotent stem cellsHuman neuronsSprague-Dawley ratsWild-type controlsPluripotent stem cellsPrefrontal cortexMature neuronal phenotypeRNU ratsHost striatumDisease in vivoGABAergic neuronsPost-transplantationImmunodeficient ratsIn vivo disease modelsIGABAHuntington's diseaseCynomolgus monkeysNeuronal phenotypeHD miceCNS environmentNeuronal survival
2018
Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration
Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY, Kaymakçalan H, Yılmaz C, Zaki MS, Rosti RO, Copeland B, Baek ST, Musaev D, Scott EC, Ben-Omran T, Kariminejad A, Kayserili H, Mojahedi F, Kara M, Cai N, Silhavy JL, Elsharif S, Fenercioglu E, Barshop BA, Kara B, Wang R, Stanley V, James KN, Nachnani R, Kalur A, Megahed H, Incecik F, Danda S, Alanay Y, Faqeih E, Melikishvili G, Mansour L, Miller I, Sukhudyan B, Chelly J, Dobyns WB, Bilguvar K, Jamra RA, Gunel M, Gleeson JG. Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics 2018, 50: 1093-1101. PMID: 30013181, PMCID: PMC6072555, DOI: 10.1038/s41588-018-0166-0.Peer-Reviewed Original ResearchConceptsNeuronal migrationHuman cerebral cortexCortical neuronal migrationΒ-catenin signalingCerebral cortexPotential disease mechanismsDevelopmental brain defectsBiallelic truncating mutationsNeuronal phenotypeBiallelic lossBrain defectsBiallelic mutationsTruncating mutationsDisease mechanismsΒ-cateninPachygyriaRecessive formNeurite stabilityNeuronsFamily membersCTNNA2OveractivityPatients
2017
The Importance of Non-neuronal Cell Types in hiPSC-Based Disease Modeling and Drug Screening
Gonzalez D, Gregory J, Brennand K. The Importance of Non-neuronal Cell Types in hiPSC-Based Disease Modeling and Drug Screening. Frontiers In Cell And Developmental Biology 2017, 5: 117. PMID: 29312938, PMCID: PMC5742170, DOI: 10.3389/fcell.2017.00117.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2015
Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells
Ho S, Hartley B, Julia T, Beaumont M, Stafford K, Slesinger P, Brennand K. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods 2015, 101: 113-124. PMID: 26626326, PMCID: PMC4860098, DOI: 10.1016/j.ymeth.2015.11.019.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsNeural progenitor cellsHiPSC-derived neural progenitor cellsHigh-throughput drug screeningHiPSC neural progenitor cellsExogenous transcription factorsProgenitor cellsInduced pluripotent stem cellsPatient-specific platformPluripotent stem cellsPatient-derived neuronsSomatic reprogrammingTranscription factorsGenetic variationExcitatory neuronsDrug screeningNeurogenin 2Neuronal inductionFunctional neuronsThroughput drug screeningNeuronal phenotypeLentiviral transductionStem cellsStarting populationDisease etiology
2014
Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons
Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X, Nunez Y, Walker MF, Murdoch JD, Sanders SJ, Fernandez TV, Ji W, Lifton RP, Vadasz E, Dietrich A, Pradhan D, Song H, Ming GL, Gu X, Haddad G, Marchetto MC, Spitzer N, Passos-Bueno MR, State MW, Muotri AR. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry 2014, 20: 1350-1365. PMID: 25385366, PMCID: PMC4427554, DOI: 10.1038/mp.2014.141.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Combined Chemotherapy ProtocolsAutistic DisorderCarboplatinCell DifferentiationCell LineCell ProliferationCells, CulturedChildDisease Models, AnimalEmbryo, MammalianEtoposideGene Expression RegulationHumansIn Vitro TechniquesInduced Pluripotent Stem CellsInhibitory Postsynaptic PotentialsMaleMiceMice, Inbred C57BLMice, TransgenicMitoxantroneMutationNeuronsPrednisoloneSignal TransductionTRPC Cation ChannelsTRPC6 Cation ChannelConceptsHuman neuronsPluripotent stem cellsNon-syndromic autismMethyl-CpGNeuronal developmentNonsynonymous mutationsDental pulp cellsFunction mutationsHaploinsufficiency leadsFunctional studiesNeuronal cellsNeuronal phenotypeGenetic variantsStem cellsFactor 1Cation channelsNon-syndromic autism spectrum disorderInsulin-like growth factor-1Incomplete penetranceMutationsRett syndromeSuch variantsAutism spectrum disorderPulp cellsGrowth factor-1Survival and Integration of Neurons Derived from Human Embryonic Stem Cells in MPTP-Lesioned Primates
Wakeman DR, Weiss S, Sladek JR, Elsworth JD, Bauereis B, Leranth C, Hurley PJ, Roth RH, Redmond DE. Survival and Integration of Neurons Derived from Human Embryonic Stem Cells in MPTP-Lesioned Primates. Cell Transplantation 2014, 23: 981-994. PMID: 23562290, DOI: 10.3727/096368913x664865.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cell linesEmbryonic stem cell linesHuman embryonic stem cellsEmbryonic stem cellsGene expression studiesStem cell linesGFP lentiviral vectorExpression studiesDifferentiated cellsDifferentiation protocolsDopamine neuronal survivalIntegration of neuronsNeuronal cellsNeuronal phenotypeTyrosine hydroxylaseStem cellsExtension of processesBiochemical analysisDopaminergic marker tyrosine hydroxylaseHESCCell linesIII-tubulinMidbrain of MPTPPhenotypeMembrane depolarization
2008
Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors
Gong J, Sagiv O, Cai H, Tsang SH, Del Priore LV. Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Experimental Eye Research 2008, 86: 957-965. PMID: 18472095, PMCID: PMC4405535, DOI: 10.1016/j.exer.2008.03.014.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsEmbryonic stem cellsNeural progenitorsNeural progenitor markersPA6 cellsStem cellsRPE markersProgenitor markersExtracellular matrixHuman Bruch's membrane explantsNeighboring cellsGene expression profilesNervous system developmentBruch's membrane explantsPA6 stromal cellsNew genesNeural retinaAdult neural retinaExpression profilesMicroarray analysisEpithelial progenitorsInduced expressionCell adhesionNeurite formationNeuronal phenotype
2006
Accelerated Evolution of Conserved Noncoding Sequences in Humans
Prabhakar S, Noonan JP, Pääbo S, Rubin EM. Accelerated Evolution of Conserved Noncoding Sequences in Humans. Science 2006, 314: 786-786. PMID: 17082449, DOI: 10.1126/science.1130738.Peer-Reviewed Original ResearchConceptsNoncoding sequencesNeuronal cell adhesionConserved Noncoding SequencesCis-regulatory changesHuman-specific substitutionsCell adhesionHuman regulatory sequencesPhenotypic divergenceAdaptive substitutionsGene regulationAccelerated evolutionIndependent evolutionRegulatory sequencesAdhesion genesHuman evolutionNeuronal phenotypeDifferent neuronal phenotypesGenesSequenceSimilar enrichmentBrain developmentChimpanzeesEvolutionMammalsAdhesion
1991
Experimental manipulation of cerebral cortical areas in primates
Rakic P. Experimental manipulation of cerebral cortical areas in primates. Philosophical Transactions Of The Royal Society B Biological Sciences 1991, 331: 291-294. PMID: 1677473, DOI: 10.1098/rstb.1991.0019.Peer-Reviewed Original ResearchConceptsSpecies-specific diversityExperimental manipulationEmbryonic developmentPrimate embryosProtomap hypothesisDevelopmental mechanismsCellular eventsMolecular mechanismsNeuronal phenotypeCerebral cortical areasSynaptic architectureHigher brain functionsCell numberCerebral cortexCongenital disorderExtrinsic influencesSynaptic circuitryCortical areasCytoarchitectonic patternCytoarchitectonic areasBrain functionEmbryosDiversityDistinct areasPhenotype
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply