2024
Colibactin Exerts Androgen-dependent and -independent Effects on Prostate Cancer
Agrawal R, Al-Hiyari S, Hugh-White R, Hromas R, Patel Y, Williamson E, Mootor M, Gonzalez A, Fu J, Haas R, Jordan M, Wickes B, Mohammed G, Tian M, Doris M, Jobin C, Wernke K, Pan Y, Yamaguchi T, Herzon S, Boutros P, Liss M. Colibactin Exerts Androgen-dependent and -independent Effects on Prostate Cancer. European Urology Oncology 2024, 8: 716-730. PMID: 39547899, PMCID: PMC12075626, DOI: 10.1016/j.euo.2024.10.015.Peer-Reviewed Original ResearchProstate cancerInduction of genomic instabilityPC diagnosisPC etiologyColibactin-producing Escherichia coliEtiology of prostate cancerProstate cancer cellsProstate cancer diagnosisSomatic point mutationsCombination in vitroGenomic instabilityAndrogen-dependentColon cancerPatient populationProstateClinical cohortInitial cancerSomatic mutationsCancer cellsDihydrotestosteroneGenetic dysfunctionSingle cell lineCancerCell linesDiagnosisExploring a Novel Role of Glycerol Kinase 1 in Prostate Cancer PC-3 Cells
Park B, Kim S, Yu S, Kim K, Jeon H, Ahn S. Exploring a Novel Role of Glycerol Kinase 1 in Prostate Cancer PC-3 Cells. Biomolecules 2024, 14: 997. PMID: 39199385, PMCID: PMC11352368, DOI: 10.3390/biom14080997.Peer-Reviewed Original ResearchPC-3 cellsProstate cancer PC-3 cellsGK deficiencyCell deathProstate cancerAnti-cancer agentsKinase 1Apoptotic cell deathDNA microarray analysisHuman prostate cancer PC-3 cellsCancer cell deathModulating tumor microenvironmentProstate cancer cellsBiomarkers of cell deathX chromosomeReduced cell viabilityEpigenetic regulationExpression vectorInvestigated genesSynthesis of triglyceridesMicroarray analysisGenetic alterationsTumor microenvironmentNovel roleCancer cellsSpontaneous Fusion with Transformed Mesenchymal Stromal Cells Results in Complete Heterogeneity in Prostate Cancer Cells
Wang R, Hu P, Wang F, Lyu J, Ou Y, Edderkaoui M, Zhang Y, Lewis M, Pandol S, Zhau H, Chung L. Spontaneous Fusion with Transformed Mesenchymal Stromal Cells Results in Complete Heterogeneity in Prostate Cancer Cells. Cancers 2024, 16: 951. PMID: 38473313, PMCID: PMC10931070, DOI: 10.3390/cancers16050951.Peer-Reviewed Original ResearchProstate cancer cellsStromal cell lineBystander cellsCancer cellsCell linesTumor cell heterogeneityFusion hybridsMesenchymal stromal cellsCell fusionTumor microenvironmentGenomic hybridizationTumor cellsMesenchymal stromal cell lineStromal cellsTumorDerivative clonesPhenotypic heterogeneityCell compartmentPhenotypic diversificationGenomic makeupBehavioral phenotypesCell heterogeneitySpontaneous fusionDerivative subclonesSublines
2023
An oral androgen receptor RIPTAC for prostate cancer.
Raina K, Eastman K, Yu X, Forbes C, Jones K, Mousseau J, Li H, Kayser-Bricker K, Crews C. An oral androgen receptor RIPTAC for prostate cancer. Journal Of Clinical Oncology 2023, 41: 184-184. DOI: 10.1200/jco.2023.41.6_suppl.184.Peer-Reviewed Original ResearchPCa cell linesAR expressionProstate cancerAR-positive cellsCastration-resistant settingLow oral doseProstate cancer modelTumor growth inhibitionProstate cancer cellsCell linesEfficacious exposureVCaP xenograftsOral dosePreclinical dataOral dosingLow nM concentrationsTumor-specific inhibitionCancer modelPharmacokinetic propertiesNormal tissuesOral bioavailabilitySignaling InhibitorsToxicology studiesAR geneCancer cells
2022
Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy.
Choksi AU, Khan AI, Lokeshwar SD, Segal D, Weiss RM, Martin DT. Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy. American Journal Of Clinical And Experimental Urology 2022, 10: 142-153. PMID: 35874285, PMCID: PMC9301064.Peer-Reviewed Original ResearchSurface of nanoparticlesNanoparticle-based therapiesCancer imagingAdministration of nanoparticlesFunctionalized nanoparticlesTherapeutic payloadsActive targetingNanoparticlesProstate cancer imagingRetention effectEnhanced permeabilityUnique advantagesC chemokine receptor type 4Chemokine receptor type 4Specific membrane antigenMolecular targetsCancer cellsProstate-specific membrane antigenReceptor type 4Knowledge of biomarkersRelated blood vesselsProstate cancer cellsExciting areaNanomedicineSelective targetingThe microRNA-3622 family at the 8p21 locus exerts oncogenic effects by regulating the p53-downstream gene network in prostate cancer progression
Zhang Y, Xu Z, Wen W, Liu Z, Zhang C, Li M, Hu F, Wei S, Bae S, Zhou J, Liu R, Wang L. The microRNA-3622 family at the 8p21 locus exerts oncogenic effects by regulating the p53-downstream gene network in prostate cancer progression. Oncogene 2022, 41: 3186-3196. PMID: 35501464, PMCID: PMC9177620, DOI: 10.1038/s41388-022-02289-8.Peer-Reviewed Original ResearchConceptsGene networksHuman prostate cancerDual-luciferase assayRepression of p53 signalingInvasion of human prostate cancer cellsOncogenic functionHuman prostate cancer cellsOncogenic effectsCell proliferationHuman prostate cancer cell linesProstate cancer cell linesCRISPR interferenceControl apoptosisCancer cell linesProstate cancer cellsTumor progressionInvasion in vitroP53 signalingUpregulation of vimentinMetastasis in vivoHuman prostate cancer tissuesCell cycleImmunoprecipitation assaysC-MycCell migrationEpigenetic regulation of EIF4A1 through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling in prostate cancer
Wang C, Leavenworth J, Zhang C, Liu Z, Yuan K, Wang Y, Zhang G, Wang S, Cui X, Zhang Y, Bae S, Zhou J, Wang L, Liu R. Epigenetic regulation of EIF4A1 through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling in prostate cancer. Oncogene 2022, 41: 2778-2785. PMID: 35361883, PMCID: PMC9215223, DOI: 10.1038/s41388-022-02272-3.Peer-Reviewed Original ResearchConceptsCpG-rich islandDNA methylationProstate cancer cellsEpigenetic regulationPrimary prostate cancerProstate cancerTargets of DNA methylationCancer cellsCRISPR-Cas9-based toolHuman prostate cancer cellsOncogenic roleCancer cell proliferation in vitroProstate cancer in vitroTranslational regulationOncogenic translationProtein translationUntranslated regionTumor growth in vivoNormal prostate tissueRNA sequencingCell proliferation in vitroCancer in vitroEIF4A1Growth in vivoElevated mRNA levelsSOX2 mediates metabolic reprogramming of prostate cancer cells
de Wet L, Williams A, Gillard M, Kregel S, Lamperis S, Gutgesell L, Vellky J, Brown R, Conger K, Paner G, Wang H, Platz E, De Marzo A, Mu P, Coloff J, Szmulewitz R, Vander Griend D. SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene 2022, 41: 1190-1202. PMID: 35067686, PMCID: PMC8858874, DOI: 10.1038/s41388-021-02157-x.Peer-Reviewed Original ResearchConceptsProstate cancer cellsSOX2 expressionCancer cellsTherapy resistanceMetastatic progressionMetabolic reprogrammingAssociated with multiple oncogenic pathwaysAndrogen-sensitive prostate cancer cellsGene targetingCastration-resistant prostate cancer cellsIncreased spare respiratory capacityChIP-seq analysisRNA-seq datasetsStem cell transcription factor Sox2Prostate cancer cell linesAnnotated tumor specimensSOX2 binding sitesPentose phosphate pathwayCRISPR-mediated deletionDecreased patient survivalSpare respiratory capacityQuantity of mitochondriaDeletion of Sox2Case-control cohortGene expression analysisValeric acid acts as a novel HDAC3 inhibitor against prostate cancer
Han R, Yang H, Li Y, Ling C, Lu L. Valeric acid acts as a novel HDAC3 inhibitor against prostate cancer. Medical Oncology 2022, 39: 213. PMID: 36175803, PMCID: PMC9522682, DOI: 10.1007/s12032-022-01814-9.Peer-Reviewed Original ResearchConceptsProstate cancer cellsProstate cancerHDAC3 inhibitorCancer cellsCancer-related deathAnti-cancer effectsVivo mouse modelAnti-cancer efficacyAnti-cancer activityMouse modelNew agentsSecond causeHDAC inhibitorsCancerNormal cellsInhibitorsValeric acidCellsCASP3 activityCulture systemDiseaseChemosensitizers
2021
Knocking down claudin receptors leads to a decrease in prostate cancer cell migration, cell growth, cell viability and clonogenic cell survival
Liu Q, Shen H, Naguib A, Weiss RM, Martin DT. Knocking down claudin receptors leads to a decrease in prostate cancer cell migration, cell growth, cell viability and clonogenic cell survival. Molecular Biomedicine 2021, 2: 31. PMID: 35006480, PMCID: PMC8607359, DOI: 10.1186/s43556-021-00053-0.Peer-Reviewed Original ResearchProstate cancer cell growthCancer cell growthProstate cancer cellsProstate cancerLNCaP cellsCommon solid organ malignancyHuman prostate cancer specimensProstate cancer cell migrationSolid organ malignanciesAdvanced prostate cancerCancer cellsHuman prostate cancer cellsNormal human prostate cellsMetastatic human prostate cancer cellsProstate cancer specimensHuman prostate cellsCell growthNew molecular targetsCell viabilityCell migrationCancer cell migrationClaudin receptorsOrgan malignanciesProstate cancer PC3Clonogenic cell survivalProstate Cancer Dormancy and Reactivation in Bone Marrow
Singh D, Patel V, Oh W, Aguirre-Ghiso J. Prostate Cancer Dormancy and Reactivation in Bone Marrow. Journal Of Clinical Medicine 2021, 10: 2648. PMID: 34208521, PMCID: PMC8234151, DOI: 10.3390/jcm10122648.Peer-Reviewed Original ResearchDisseminated cancer cellsProstate cancerTumor microenvironmentCancer cellsBone marrowTarget prostate cancer cellsProstate cancer dormancyVariable clinical coursePrimary tumor microenvironmentProstate cancer cellsMetastatic spreadClinical courseEventual metastasisMalignant phaseCancer dormancyMetastatic cellsPrimary siteProstatePre-cancerousEpigenetic reprogrammingCancerMetastasisSecondary organsDisease statesMarrowOncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription
Zhu Y, Gujar A, Wong C, Tjong H, Ngan C, Gong L, Chen Y, Kim H, Liu J, Li M, Mil-Homens A, Maurya R, Kuhlberg C, Sun F, Yi E, deCarvalho A, Ruan Y, Verhaak R, Wei C. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 2021, 39: 694-707.e7. PMID: 33836152, PMCID: PMC8119378, DOI: 10.1016/j.ccell.2021.03.006.Peer-Reviewed Original ResearchConceptsGenome-wide activationSingle-molecule resolutionMobile enhancerChromatin interactionsChromosomal interactionsChromatin contactsTranscription controlChromosomal transcriptionChromosomal targetsTranscriptional programsTranscriptional enhancersChromosomal genesChIA-PETGene transcriptionCancer genomesInteraction networksDNA functionH3K27ac signalProstate cancer cellsCircular DNAEcDNAsExpression levelsCancer cellsOncogenic alterationsTranscriptionEffects of MTX-23, a Novel PROTAC of Androgen Receptor Splice Variant-7 and Androgen Receptor, on CRPC Resistant to Second-Line Antiandrogen Therapy
Lee G, Nagaya N, Desantis J, Madura K, Sabaawy H, Kim W, Vaz R, Cruciani G, Kim I. Effects of MTX-23, a Novel PROTAC of Androgen Receptor Splice Variant-7 and Androgen Receptor, on CRPC Resistant to Second-Line Antiandrogen Therapy. Molecular Cancer Therapeutics 2021, 20: 490-499. PMID: 33277442, DOI: 10.1158/1535-7163.mct-20-0417.Peer-Reviewed Original ResearchConceptsCastration-resistant prostate cancerSecond-line antiandrogen therapyAR full lengthAndrogen receptor splice variant 7AR-V7Antiandrogen therapyAndrogen-responsive prostate cancer cellsProstate cancer cellular proliferationHuman prostate cancer cell linesProstate cancer cell linesStandard of careCancer cellular proliferationCellular proliferationPotential therapeutic valueProstate cancer cellsAgents abirateroneCancer cell linesProteolysis Targeting ChimerasMechanisms of resistanceAndrogen receptorAR DNAProstate cancerTumor growthTherapeutic valueAntiproliferative effects
2020
Dual role of reactive oxygen species in autophagy and apoptosis induced by compound PN in prostate cancer cells
Choi H, Kim K, Park K, Kim S, Park S, Yu S, Kim Y, Kim D, Chung K, Ahn S. Dual role of reactive oxygen species in autophagy and apoptosis induced by compound PN in prostate cancer cells. Molecular & Cellular Toxicology 2020, 17: 41-50. DOI: 10.1007/s13273-020-00107-4.Peer-Reviewed Original ResearchMitochondrial reactive oxygen speciesReactive oxygen speciesCell deathMolecular mechanismsProstate cancer cellsPC-3 cellsCell survivalAnti-cancer activityROS productionApoptotic cell deathCancer cellsOxygen speciesROS-dependent mannerInduction of apoptosisProstate cancer PC-3 cellsHuman prostate cancer cellsAcceleration of apoptosisCancer PC-3 cellsInhibition of autophagyProduction of intracellularIntracellular ROS scavengerProstate cancer treatmentExpression of apoptosisAutophagy inductionWestern blot analysisElevated circulating CCL2 in prostate cancer patients.
Lin J, Caress A, Ahmed F, Taylor N, Gong Y, Oh W. Elevated circulating CCL2 in prostate cancer patients. Journal Of Clinical Oncology 2020, 38: 201-201. DOI: 10.1200/jco.2020.38.6_suppl.201.Peer-Reviewed Original ResearchProstate cancer patientsProstate cancerProstate cancer cellsCCL2 concentrationsHuman cytokine arrayElevated CCL2Tumor microenvironmentCytokine arrayCCL2 mRNACCL2 inductionPC3 cellsPatient seraPC3 PCa cell linesConditioned mediumIL-6Prostate cancer patient seraImmunosuppressive tumor microenvironmentMonocyte chemoattractant protein-1Secretion of CCL2GM-CSF-dependent mannerPCa cell linesChemoattractant protein-1Cancer patient seraControl patient serumIn vitro coculture model
2019
Dihydrotestosterone Increases Cytotoxic Activity of Macrophages on Prostate Cancer Cells via TRAIL
Lee G, Kim J, Kwon S, Stein M, Hong J, Nagaya N, Billakanti S, Kim M, Kim W, Kim I. Dihydrotestosterone Increases Cytotoxic Activity of Macrophages on Prostate Cancer Cells via TRAIL. Endocrinology 2019, 160: 2049-2060. PMID: 31184711, PMCID: PMC6691685, DOI: 10.1210/en.2019-00367.Peer-Reviewed Original ResearchConceptsAndrogen deprivation therapyCell linesHuman peripheral blood monocytesMetastatic prostate cancerPotential treatment optionPeripheral blood monocytesCytotoxicity of macrophagesHuman monocyte cell lineProstate cancer cellsCaP cell linesMonocyte cell lineVivo mouse studiesCytotoxic activityMurine macrophage cell lineApoptosis-inducing ligandConcentration-dependent mannerDeprivation therapyClodronate liposomesTreatment optionsM1 polarizationCaP tumorsAndrogen receptorMacrophage cell lineProstate cancerImmune response
2018
Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation
Brown NE, Paluch AM, Nashu MA, Komurov K, Waltz SE. Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation. Neoplasia 2018, 20: 917-929. PMID: 30121008, PMCID: PMC6098205, DOI: 10.1016/j.neo.2018.07.003.Peer-Reviewed Original ResearchMeSH KeywordsAndrogensAnimalsApoptosisbeta CateninBiomarkersCell ProliferationGene Expression Regulation, NeoplasticHumansImmunohistochemistryMaleMiceNF-kappa BProstatic NeoplasmsProstatic Neoplasms, Castration-ResistantReceptor Protein-Tyrosine KinasesReceptors, AndrogenSignal TransductionTranscriptional Regulator ERGConceptsCastration-resistant prostate cancerAndrogen receptor reactivationProstate cancerAndrogen deprivationReceptor reactivationAndrogen receptor nuclear localizationHormone-refractory prostate cancerProstate cancer cell growthAR-responsive genesCurrent treatment strategiesCastration-resistant growthProstate cancer growthRON receptor tyrosine kinaseProstate cancer progressionHuman hormone-refractory prostate cancersCancer cell growthProstate cancer cellsMurine prostate cancer cellsDeprivation therapyCRPC therapyCRPC cellsMechanisms of resistanceAndrogen receptorTreatment strategiesRON overexpression
2017
Mitochondrial ROS activates ERK/autophagy pathway as a protected mechanism against deoxypodophyllotoxin-induced apoptosis
Kim SH, Kim KY, Park SG, Yu SN, Kim YW, Nam HW, An HH, Kim YW, Ahn SC. Mitochondrial ROS activates ERK/autophagy pathway as a protected mechanism against deoxypodophyllotoxin-induced apoptosis. Oncotarget 2017, 5: 111581-111596. PMID: 29340076, PMCID: PMC5762344, DOI: 10.18632/oncotarget.22875.Peer-Reviewed Original ResearchMitochondrial reactive oxygen speciesReactive oxygen speciesCell death responseMultiple cellular processesProtein 1 light chain 3Apoptotic prostate cancer cellsSelective fluorescent dyeMicrotubule-associated protein 1 light chain 3Acidic vesicular organellesMitochondrial membrane potentialG2/M cell cycle arrestM cell cycle arrestCell cycle arrestLight chain 3LC3 knockdownCellular processesDeath responseInhibition of autophagyApoptosis-related proteinsVesicular organellesAutophagy pathwayMolecular mechanismsCellular responsesProstate cancer cell linesProstate cancer cellsInhibition of Autophagy Promotes Salinomycin-Induced Apoptosis via Reactive Oxygen Species-Mediated PI3K/AKT/mTOR and ERK/p38 MAPK-Dependent Signaling in Human Prostate Cancer Cells
Kim K, Park K, Kim S, Yu S, Park S, Kim Y, Seo Y, Ma J, Ahn S. Inhibition of Autophagy Promotes Salinomycin-Induced Apoptosis via Reactive Oxygen Species-Mediated PI3K/AKT/mTOR and ERK/p38 MAPK-Dependent Signaling in Human Prostate Cancer Cells. International Journal Of Molecular Sciences 2017, 18: 1088. PMID: 28524116, PMCID: PMC5454997, DOI: 10.3390/ijms18051088.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisAutophagyCell ProliferationExtracellular Signal-Regulated MAP KinasesFlavonoidsHumansImidazolesMaleMAP Kinase Signaling SystemMembrane Potential, Mitochondrialp38 Mitogen-Activated Protein KinasesPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsProto-Oncogene Proteins c-aktPyransPyridinesReactive Oxygen SpeciesTOR Serine-Threonine KinasesConceptsExtracellular signal-regulated kinasePI3K/Akt/mTORProstate cancer cellsAkt/mTORCancer cellsP38 MAPK-dependent signalingUpregulation of ERKSignal-regulated kinaseMAPK-dependent signalingP38 MAPK signaling pathwaysMitochondrial membrane potentialMAPK signaling pathwaysChemo-resistant cancersHuman prostate cancer cellsReactive oxygen species productionInhibition of autophagyPI3K inhibitorsPotential antitumor mechanismAcridine orange stainingCaspase-3 activityOxygen species productionSignaling pathwaysP38 inhibitorPropidium iodide assayMTOR activityLasalocid induces cytotoxic apoptosis and cytoprotective autophagy through reactive oxygen species in human prostate cancer PC-3 cells
Kim K, Kim S, Yu S, Park S, Kim Y, Nam H, An H, Yu H, Kim Y, Ji J, Seo Y, Ahn S. Lasalocid induces cytotoxic apoptosis and cytoprotective autophagy through reactive oxygen species in human prostate cancer PC-3 cells. Biomedicine & Pharmacotherapy 2017, 88: 1016-1024. PMID: 28178613, DOI: 10.1016/j.biopha.2017.01.140.Peer-Reviewed Original ResearchConceptsProstate cancer cellsHuman prostate cancer cellsAcidic vesicular organelles (AVOs) formationApoptotic cell death pathwayCancer cellsCell death pathwaysProtein 1 light chain 3Cell cycle arrestLight chain 3Human prostate cancer PC-3 cellsProstate cancer PC-3 cellsReactive oxygen species productionPossible signal pathwaysCancer PC-3 cellsInhibition of autophagyOrganelle formationDeath pathwaysNew potential chemotherapeutic agentsReactive oxygen speciesOxygen species productionMitochondrial hyperpolarizationMolecular mechanismsPotential chemotherapeutic agentProduction of ROSCytoprotective autophagy
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply