2021
Biocompatibility of nanomaterials and their immunological properties
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomedical Materials 2021, 16: 042005. PMID: 33578402, PMCID: PMC8357854, DOI: 10.1088/1748-605x/abe5fa.Peer-Reviewed Original ResearchConceptsMetal/metal oxideBiocompatibility of nanomaterialsNanomaterialsNovel sensingMetal oxidesBiocompatibilityOverall biocompatibilityBulk materialClinical trialsOccupational exposureTherapeutic approachesSystemic effectsNanotoxicityClinical useFabricationPutative negative effectsImmunological propertiesSensingCell typesOxideLiposomesHost proteinsReciprocal interactionsApplicationsCarbon
2020
Antibacterial activity and synergism of the essential oil of Nectandra megapotamica (L.) flowers against OXA-23-producing Acinetobacter baumannii
Vasconcelos N, Mallmann V, Costa É, Simionatto E, Coutinho E, Da Silva R, Ribeiro S, Franco O, Migliolo L, Croda J, Simionatto S. Antibacterial activity and synergism of the essential oil of Nectandra megapotamica (L.) flowers against OXA-23-producing Acinetobacter baumannii. Journal Of Essential Oil Research 2020, 32: 260-268. DOI: 10.1080/10412905.2020.1740802.Peer-Reviewed Original ResearchGas chromatography/mass spectrometry analysisChromatography/mass spectrometry analysisGas chromatography/flame ionization detectorNatural plant essential oilsDrug delivery systemsAntibacterial activityEssential oilMass spectrometry analysisFlame ionization detectorSpectrometry analysisChemical compositionDelivery systemAntimicrobial activityIonization detectorBiological propertiesSynergistic effectOxygenated sesquiterpenesCaryophyllene oxideNew drug developmentOilPlant essential oilsDrug developmentExcipientsOxide
2017
Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO2 Films
Lee S, Regan K, Hedström S, Matula A, Chaudhuri S, Crabtree R, Batista V, Schmuttenmaer C, Brudvig G. Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO2 Films. The Journal Of Physical Chemistry C 2017, 121: 22690-22699. DOI: 10.1021/acs.jpcc.7b07855.Peer-Reviewed Original ResearchDye-sensitized photoelectrochemical cellsElectron injection dynamicsPhotoelectrochemical cellsLinker lengthMetal oxide filmsMolecular photosensitizersPorphyrin coreAnchor groupsElectron acceptorInjection dynamicsLinkerSnO2 filmsOxide filmsFilmsTerphenyleneSystematic studyPhenylenePorphyrinsBiphenyleneSpectroscopyComputational modelingAcceptorPhotosensitizerSynthesisOxide
2016
Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium Dioxide
Brennan B, Koenigsmann C, Materna K, Kim P, Koepf M, Crabtree R, Schmuttenmaer C, Brudvig G. Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium Dioxide. The Journal Of Physical Chemistry C 2016, 120: 12495-12502. DOI: 10.1021/acs.jpcc.6b02635.Peer-Reviewed Original ResearchDye-sensitized photoelectrochemical cellsMetal oxidesMetal oxide surfacesDirect surface functionalizationSurface-bound speciesConvenient new methodHydroxamic acidDye aggregationSurface speciesSurface functionalizationCovalent interactionsOxide surfaceHydroxamate groupHydrolytic stabilityPhotoelectrochemical cellsTiO2 surfaceStable complexesTitanium dioxideDeprotectionChelation methodBinding propertiesMK-2Room temperatureHydroxamateOxide
2014
Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance
Strohbehn G, Coman D, Han L, Ragheb RR, Fahmy TM, Huttner AJ, Hyder F, Piepmeier JM, Saltzman WM, Zhou J. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. Journal Of Neuro-Oncology 2014, 121: 441-449. PMID: 25403507, PMCID: PMC4323763, DOI: 10.1007/s11060-014-1658-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBrain NeoplasmsConvectionDrug Delivery SystemsFerric CompoundsGlioblastomaHumansImage Processing, Computer-AssistedLactic AcidMagnetic Resonance ImagingNanoparticlesNeuroimagingPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerRatsRats, Sprague-DawleyConceptsBrain-penetrating nanoparticlesSuperparamagnetic iron oxideEfficient deliveryDrug-loaded nanoparticlesDistribution of nanoparticlesTransverse relaxivityPLGA nanoparticlesNanoparticlesConvection-enhanced deliveryDelivery platformFuture clinical applicationsUniversal tumor recurrenceClinical translationSignal attenuationDetection modalitiesIron oxideSame morphologyParticle distributionDeliveryGroundbreaking approachClinical applicationRelevant volumesRelaxivityTreatment of GBMOxide
2012
Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs
Sherman J, Le C, Lamers V, Eckelman M. Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs. Anesthesia & Analgesia 2012, 114: 1086-1090. PMID: 22492186, DOI: 10.1213/ane.0b013e31824f6940.Peer-Reviewed Original ResearchConceptsGHG impactsLife cycle GHG emissionsLife cycle greenhouse gas emissionsGas flow rateGHG emissionsLife cycle assessmentEnvironmental impact mitigation strategiesFull cradleGreenhouse gasesUncontrolled emissionsGreenhouse gas emissionsFlow rateGrave approachCycle assessmentGas applicationsImpact mitigation strategiesSyringe pumpGas emissionsEntire life cycleLife cycle contextWaste anesthetic gasesEnvironmental impactsOrders of magnitudeCapturing systemOxide
2010
Water -stable, hydroxamate anchors for functionalization of TiO 2 surfaces with ultrafast interfacial electron transfer
McNamara W, Milot R, Song H, Snoeberger R, Batista V, Schmuttenmaer C, Brudvig G, Crabtree R. Water -stable, hydroxamate anchors for functionalization of TiO 2 surfaces with ultrafast interfacial electron transfer. Energy & Environmental Science 2010, 3: 917-923. DOI: 10.1039/c001065k.Peer-Reviewed Original ResearchInterfacial electron transferUltrafast interfacial electron transferTiO2 nanoparticlesSolar energy conversionElectron transferPhotocatalytic cellsNanoparticlesOrganic dyesTiO 2 surfaceMetal oxidesEnergy conversionElectron injectionConduction bandTHz spectroscopyAqueous conditionsTiO2Transition metal complexesNeutral pHFunctionalizationMetal complexesCarboxylate anchorStrong bindingStable moleculesOxideCarboxylic acids
2006
THE REGULATION AND PHARMACOLOGY OF ENDOTHELIAL NITRIC OXIDE SYNTHASE
Dudzinski DM, Igarashi J, Greif D, Michel T. THE REGULATION AND PHARMACOLOGY OF ENDOTHELIAL NITRIC OXIDE SYNTHASE. The Annual Review Of Pharmacology And Toxicology 2006, 46: 235-276. PMID: 16402905, DOI: 10.1146/annurev.pharmtox.44.101802.121844.Peer-Reviewed Original Research
2003
Synthesis and characterization of reduced transition metal oxides and nanophase metals with hydrazine in aqueous solution
Gui Z, Fan R, Mo W, Chen X, Yang L, Hu Y. Synthesis and characterization of reduced transition metal oxides and nanophase metals with hydrazine in aqueous solution. Materials Research Bulletin 2003, 38: 169-176. DOI: 10.1016/s0025-5408(02)00983-2.Peer-Reviewed Original ResearchAqueous solutionMetal oxidesFirst-row transition metal complexesRow transition metal complexesTransition metal complexesAqueous phase reductionTransition metal oxidesMetal complexesPost-annealing processHydrazine reductionReaction detailsProper thermal treatmentΓ-Mn2O3Direct reductionPhase reductionThermal treatmentHydrazineRoom temperatureOxideNanoclustersCobaltSynthesisCopperNanoscaleSolution
2000
Neuronal Protection by Nitric Oxide-Related Species
Lipton S, Choi Y, Sucher N, Chen H. Neuronal Protection by Nitric Oxide-Related Species. 2000, 143-152. DOI: 10.1007/978-4-431-67949-3_9.Peer-Reviewed Original ResearchRedox-related speciesFree sulfhydryl groupsSufficient redox potentialNO groupSulfhydryl groupsOrganic synthesisProtein cysteine residuesSingle sulfhydryl groupRedox potentialChemical reactionsRedox agentsCysteine sulfhydrylsDistinctive chemistryAdditional electronLess electronBiological systemsRedox modulationOxideDisulfide bondsCysteine residuesEndogenous redox agentsDifferent biological effectsChemistryElectronsLipoic acid
1996
Reversible Binding of Nitric Oxide to Tyrosyl Radicals in Photosystem II. Nitric Oxide Quenches Formation of the S3 EPR Signal Species in Acetate-Inhibited Photosystem II†
Szalai V, Brudvig G. Reversible Binding of Nitric Oxide to Tyrosyl Radicals in Photosystem II. Nitric Oxide Quenches Formation of the S3 EPR Signal Species in Acetate-Inhibited Photosystem II†. Biochemistry 1996, 35: 15080-15087. PMID: 8942675, DOI: 10.1021/bi961117w.Peer-Reviewed Original ResearchConceptsS3 EPR signalOxygen-evolving complexMultiline EPR signalEPR signalS2 statePhotosystem IIManganese-depleted photosystem IIS2-state multiline EPR signalRedox-active tyrosinesPhotosystem II samplesRadical EPR signalSignal speciesNitric oxide (NO) bindsTyrosyl radicalsAmmonia resultsReversible bindingOxideYZDipolar interactionsRibonucleotide reductase
1983
The Structure of the Metal Centers in Cytochrome c Oxidase
Chan S, Martin C, Wang H, Brudvig G, Stevens T. The Structure of the Metal Centers in Cytochrome c Oxidase. Nato Science Series C: 1983, 313-328. DOI: 10.1007/978-94-009-7049-6_27.Peer-Reviewed Original ResearchMetal centerLow-temperature electron paramagnetic resonance (EPR) spectroscopyElectron nuclear double resonance spectroscopyNuclear double resonance spectroscopyElectron paramagnetic resonance spectroscopyResonance spectroscopyParamagnetic resonance spectroscopyLow-temperature EPRO2 reduction siteDouble resonance spectroscopyReduction siteSpectroscopyCytochrome c oxidaseC oxidaseUnambiguous informationStructureEPRAmino acidsOxidaseOxideElucidationAcidNitric oxide
1980
Reactions of nitric oxide with cytochrome c oxidase.
Brudvig G, Stevens T, Chan S. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 1980, 19: 5275-85. PMID: 6255988, DOI: 10.1021/bi00564a020.Peer-Reviewed Original Research
1979
Potential radiosensitizing agents. Dinitroimidazoles.
Agrawal K, Bears K, Sehgal R, Brown J, Rist P, Rupp WD. Potential radiosensitizing agents. Dinitroimidazoles. Journal Of Medicinal Chemistry 1979, 22: 583-6. PMID: 379334, DOI: 10.1021/jm00191a025.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply