2024
Leveraging engineered nanomaterials to support material circularity
Gilbertson L, Eckelman M, Theis T. Leveraging engineered nanomaterials to support material circularity. Environmental Science Nano 2024, 11: 2885-2893. DOI: 10.1039/d4en00110a.Peer-Reviewed Original Research
2023
Recent Advances in DNA Origami-Engineered Nanomaterials and Applications
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chemical Reviews 2023, 123: 3976-4050. PMID: 36990451, PMCID: PMC10103138, DOI: 10.1021/acs.chemrev.3c00028.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDNA origami techniquePaul RothemundDNA nanotechnologyOrigami techniqueExciting achievementsNanomaterialsMaterials scienceRecent progressRecent advancesNanotechnologyUseful applicationsApplicationsRothemundSignificant advancesUnexplored research avenuesOriginal proposalFieldPhysicsMathematicsEngineeringAdvancesUnique fieldChapter 22 Photosynthesis and nanotechnology present status and future perspectives
Hou H, Brudvig G. Chapter 22 Photosynthesis and nanotechnology present status and future perspectives. 2023, 493-501. DOI: 10.1016/b978-0-323-98391-4.00008-3.Peer-Reviewed Original ResearchArtificial catalytic systemsApplication of bioenergyFuture perspectivesSolar energyExciting fieldHigher plantsPhotosynthetic mechanismNanomaterialsNanotechnologyField of photosynthesisCatalytic systemPhotosynthesisPotential challengesCurrent statusFood productionApplicationsBioenergyPresent statusPlants
2022
Frame-Guided Assembly of Amphiphiles
Dong Y, Yang Y, Lin C, Liu D. Frame-Guided Assembly of Amphiphiles. Accounts Of Chemical Research 2022, 55: 1938-1948. PMID: 35786832, DOI: 10.1021/acs.accounts.2c00234.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsFrame-guided assemblyMolecular structureAssembly of amphiphilesArrangement of moleculesTraditional chemical industryMembrane protein incorporationProtein-lipid bilayerAmphiphilic assembliesAssembly morphologyAmphiphile assembliesFunctional nanomaterialsVersatile strategyAqueous environmentHydrophobic groupsHydrophobic moleculesFull surface areaHydrophobic interactionsAmphiphilesDrug deliveryMembrane proteinsFunctional complexAmphiphile concentrationAssembly strategyEPR effectNanomaterials
2021
Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications
Fateh S, Moradi L, Kohan E, Hamblin M, Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein Journal Of Nanotechnology 2021, 12: 808-862. PMID: 34476167, PMCID: PMC8372309, DOI: 10.3762/bjnano.12.64.Peer-Reviewed Original ResearchTheranostic nanomaterialsCell deathReactive oxygen species generationClinical imaging modalitiesOxygen species generationTherapeutic effectImaging modalitiesMesoporous silica nanoparticlesPolymeric nanoparticlesRelease of encapsulated drugsAcoustic radiation forceTitania nanostructuresSpecies generationCarbon nanostructuresLocal thermal effectsUltrasoundDroplet vaporizationSilica nanoparticlesAcoustic droplet vaporizationCavitation microbubblesDeathTheranosticsThermal effectsNanoparticlesNanomaterialsUtilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment
Westerhoff P, Alvarez PJJ, Kim J, Li Q, Alabastri A, Halas NJ, Villagran D, Zimmerman J, Wong MS. Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion In Chemical Engineering 2021, 33: 100709. PMID: 34804780, PMCID: PMC8597955, DOI: 10.1016/j.coche.2021.100709.Peer-Reviewed Original ResearchUnique nanoscale propertiesWater treatmentBroad electromagnetic spectrumSolar-based technologiesNanomaterial designElectromagnetic spectrumNanoscale propertiesWater treatment technologiesNanomaterialsCentury-old technologyExternal energy sourceTreatment technologiesMaterial propertiesAquatic organismsDecentralized communityTremendous improvementGreat attentionEnergy sourcesTechnologyIndustrial processesWater processesSpectraPropertiesClean waterSynthesisBiocompatibility of nanomaterials and their immunological properties
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomedical Materials 2021, 16: 042005. PMID: 33578402, PMCID: PMC8357854, DOI: 10.1088/1748-605x/abe5fa.Peer-Reviewed Original ResearchConceptsMetal/metal oxideBiocompatibility of nanomaterialsNanomaterialsNovel sensingMetal oxidesBiocompatibilityOverall biocompatibilityBulk materialClinical trialsOccupational exposureTherapeutic approachesSystemic effectsNanotoxicityClinical useFabricationPutative negative effectsImmunological propertiesSensingCell typesOxideLiposomesHost proteinsReciprocal interactionsApplicationsCarbon
2020
Semiconductor-to-conductor transition in 2D copper( ii ) oxide nanosheets through surface sulfur-functionalization
Montgomery MJ, Sugak NV, Yang KR, Rogers JM, Kube SA, Ratinov AC, Schroers J, Batista VS, Pfefferle LD. Semiconductor-to-conductor transition in 2D copper( ii ) oxide nanosheets through surface sulfur-functionalization. Nanoscale 2020, 12: 14549-14559. PMID: 32613999, DOI: 10.1039/d0nr02208j.Peer-Reviewed Original ResearchCuO nanosheetsTransition metal oxide nanomaterialsOxide nanosheetsCu-S bondsMetal oxide nanomaterialsSurface hydroxyl groupsOverall crystal structureCopper oxide nanosheetsCarbon materialsOxide nanomaterialsHydrogen sulfide gasHydroxyl groupsProperties of materialsCrystal structureNanosheetsSulfide gasEnergy generationConductor transitionValence bandFermi levelFunctionalizationSemiconductorsCatalysisNanomaterialsSurfaceA poly(thymine)–melamine duplex for the assembly of DNA nanomaterials
Li Q, Zhao J, Liu L, Jonchhe S, Rizzuto F, Mandal S, He H, Wei S, Sleiman H, Mao H, Mao C. A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials. Nature Materials 2020, 19: 1012-1018. PMID: 32661383, PMCID: PMC7732259, DOI: 10.1038/s41563-020-0728-2.Peer-Reviewed Original ResearchConceptsHydrogen-bonding motifsPresence of melamineHydrogen bonding faceX-ray crystallographyAdenine-thymine base pairsDNA base pairingDNA duplex structureDNA nanomaterialsHydrogen bondsDNA nanotechnologyRight-handed duplexSensitive detectionHelical columnsSmall moleculesMelamineStrand displacementBase pairingMechanical strengthDuplexDuplex structureThymine residuesPolymersNanomaterialsCrystallographyBondsSelf-Assembled Nanomaterials for Chronic Skin Wound Healing
Kang HJ, Chen N, Dash BC, Hsia HC, Berthiaume F. Self-Assembled Nanomaterials for Chronic Skin Wound Healing. Advances In Wound Care 2020, 10: 221-233. PMID: 32487014, PMCID: PMC8024239, DOI: 10.1089/wound.2019.1077.Peer-Reviewed Original ResearchConceptsSelf-assembled nanomaterialsDrug delivery capabilityNanomaterialsWound healing applicationsTunable mechanicsExcellent biocompatibilityMultifunctional propertiesPhysiochemical propertiesMultiple functionalitiesDelivery systemComplex multifunctional structuresDelivery capabilityHealing applicationsWound dressingsPropertiesMultifunctional structuresLow costChronic wound healing applicationsBiocompatibilityGrowth factor delivery systemEffective wound therapyMaterialsDegradationMechanismStructure
2019
Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles
Deng G, Ma C, Zhao H, Zhang S, Liu J, Liu F, Chen Z, Chen AT, Yang X, Avery J, Zou P, Du F, Lim KP, Holden D, Li S, Carson RE, Huang Y, Chen Q, Kimberly WT, Simard JM, Sheth KN, Zhou J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics 2019, 9: 6991-7002. PMID: 31660082, PMCID: PMC6815966, DOI: 10.7150/thno.35791.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntioxidantsBetulinic AcidBrain EdemaDrug Delivery SystemsDrug Therapy, CombinationDrugs, Chinese HerbalEucommiaceaeGlyburideHumansMaleMiceMice, Inbred C57BLNanoparticlesPentacyclic TriterpenesPositron Emission Tomography Computed TomographyRatsRats, Sprague-DawleyStrokeTriterpenesConceptsBA nanoparticlesFunctional nanomaterialsMultifunctional nanoparticlesAcid nanoparticlesNanoparticlesSingle-agent pharmacotherapyNanomaterialsDrug deliveryCombination therapyComplementary targetTherapeutic benefitPositron emission tomography-computed tomographyEmission tomography-computed tomographyTomography-computed tomographyIschemia-induced infarctionIschemic brainIschemic strokeStroke treatmentBrain penetrabilityBetulinic acidClinical managementEffective pharmacotherapyIntravenous administrationEffective treatmentMost therapeutics
2017
Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials
Yuan H, Wilks M, Fakhri G, Normandin M, Kaittanis C, Josephson L. Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials. PLOS ONE 2017, 12: e0172722. PMID: 28225818, PMCID: PMC5321420, DOI: 10.1371/journal.pone.0172722.Peer-Reviewed Original ResearchConceptsClick reactionClick chemistryCopper-free click reactionCopper-CatalyzedAzide groupsBiomolecule attachmentReporter groupNP surfaceTargeted nanoparticlesNanoparticlesBioactive groupsMultifunctional nanomaterialsBiomedical applicationsSynthesisIntermediateReactionChemistryNanomaterialsBiomoleculesAlkynesCombination of techniquesCell surface receptorsAzideTherapeutic agentsClickNanomaterials for Drug Delivery to the Brain
Gaudin A, Seo Y, Song E, Quijano E, King A, Saltzman W. Nanomaterials for Drug Delivery to the Brain. 2017, 549-570. DOI: 10.1016/b978-0-12-803581-8.09288-2.Peer-Reviewed Original Research
2016
A Scalable Platform for Functional Nanomaterials via Bubble‐Bursting
Feng J, Nunes J, Shin S, Yan J, Kong Y, Prud'homme R, Arnaudov L, Stoyanov S, Stone H. A Scalable Platform for Functional Nanomaterials via Bubble‐Bursting. Advanced Materials 2016, 28: 4047-4052. PMID: 27007617, DOI: 10.1002/adma.201505994.Peer-Reviewed Original Research
2013
Insights on the Facet Specific Adsorption of Amino Acids and Peptides toward Platinum
Ramakrishnan SK, Martin M, Cloitre T, Firlej L, Cuisinier F, Gergely C. Insights on the Facet Specific Adsorption of Amino Acids and Peptides toward Platinum. Journal Of Chemical Information And Modeling 2013, 53: 3273-3279. PMID: 24289530, DOI: 10.1021/ci400630d.Peer-Reviewed Original ResearchConceptsMolecular dynamics simulationsInorganic surfacesPt facetsSpecific adsorptionPredictable conformationsNovel nanomaterialsInorganic materialsDifferential adsorptionAdhesion peptidesMolecular architectureDynamics simulationsAdsorptionProgrammable shapesRecognition behaviorBuilding blocksAmino acidsEnhanced affinityPeptide bindingPolar amino acidsCrystallographic planesAcidPeptidesBiomoleculesBionanomaterialsNanomaterials
2011
Molecular aptamers for drug delivery
Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, Yang R, Liu C. Molecular aptamers for drug delivery. Trends In Biotechnology 2011, 29: 634-640. PMID: 21821299, PMCID: PMC3218254, DOI: 10.1016/j.tibtech.2011.06.009.Peer-Reviewed Original ResearchConceptsVariety of nanomaterialsAptamer-mediated deliveryRapid tissue penetrationEasy chemical synthesisDNA micellesActive targetingGold nanorodsCarbon nanotubesMolecular aptamersChemical synthesisDrug deliveryDNA hydrogelsMolecular probesTissue penetrationAttractive moleculeAptamerPowerful technologyRecent progressWidespread applicationNanomaterialsTreatment of cancerNanorodsHigh affinityNanotubesDeliveryDeciphering the mystery of hexagon holes in an all-boron graphene α-sheet
Galeev T, Chen Q, Guo J, Bai H, Miao C, Lu H, Sergeeva A, Li S, Boldyrev A. Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. Physical Chemistry Chemical Physics 2011, 13: 11575-11578. PMID: 21603683, DOI: 10.1039/c1cp20439d.Peer-Reviewed Original Research
2008
Toward Green Nano
Eckelman M, Zimmerman J, Anastas P. Toward Green Nano. Journal Of Industrial Ecology 2008, 12: 316-328. DOI: 10.1111/j.1530-9290.2008.00043.x.Peer-Reviewed Original ResearchGreen nanoE-factorSynthesis of nanomaterialsGreener synthesis routesGreen chemistry metricsGold nanoparticlesNanomaterial productionMetal nanoparticlesSpecific nanomaterialsCarbon nanotubesGreen chemistryTraditional synthesisSynthesis routeNanoNanomaterialsPotential applicationsDifferent production methodsNanotechnologyNanoparticlesProduction methodsResearch interestEnvironmental implicationsNew classSynthesisOrders of magnitude
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply