2024
Real World Data on Efficacy and Safety of EPOCH in T-Cell Lymphoma
Straining R, Foss F, Schiffer M, Amin K, Agarwal S, Isufi I, Huntington S, Kothari S, Seropian S, Girardi M, Sethi T. Real World Data on Efficacy and Safety of EPOCH in T-Cell Lymphoma. Clinical Lymphoma Myeloma & Leukemia 2024, 25: e96-e102. PMID: 39368885, DOI: 10.1016/j.clml.2024.09.005.Peer-Reviewed Original ResearchT-cell lymphomaHeterogeneous group of lymphoid malignanciesGroup of lymphoid malignanciesPeripheral T-cell lymphomaAggressive T-cell lymphomaCutaneous T-cell lymphomaT cellsResponse rateR/R settingComplete responseLymphoid malignanciesPoor outcomeAnaplastic large cell lymphomaFrontline treatment regimensLarge cell lymphomaCombination of prednisoneHeterogeneous groupCell lymphomaChemotherapy optionsCaucasian patientsFirst-linePositive patientsTreatment regimensGrade 3LymphomaLiquid biopsy‐based circulating tumour (ct)DNA analysis of a spectrum of myeloid and lymphoid malignancies yields clinically actionable results
Mata D, Lee J, Shanmugam V, Marcus C, Schrock A, Williams E, Ritterhouse L, Hickman R, Janovitz T, Patel N, Kroger B, Ross J, Mirza K, Oxnard G, Vergilio J, Elvin J, Benhamida J, Decker B, Xu M. Liquid biopsy‐based circulating tumour (ct)DNA analysis of a spectrum of myeloid and lymphoid malignancies yields clinically actionable results. Histopathology 2024, 84: 1224-1237. PMID: 38422618, DOI: 10.1111/his.15168.Peer-Reviewed Original ResearchConceptsNon-Hodgkin's lymphomaPlasma-cell neoplasmsAcute myeloid leukemiaCirculating tumor DNAHodgkin lymphomaMyelodysplastic syndromeHaematopoietic neoplasmsNext-generation sequencingTissue-based NGSMaximum somatic allele frequencyFoundationOne Liquid CDxTherapy-resistant clonesRelevant genomic alterationsPositive percent agreementPotential clinical utilityLymphoid malignanciesTumor DNAMyeloid leukemiaPlasma-cellsTissue biopsiesGenomic alterationsPathogenic alterationsLiquid biopsyMolecular profilingTP53
2023
Repurposing GSK3B Small Molecule Inhibitors for Refractory Lymphoid Malignancies
Cosgun K, Robinson M, Oulghazi S, Xu L, Xiao G, Chan L, Lee J, Kume K, Leveille E, Arce D, Khanduja D, Feldhahn N, Song J, Chan W, Chen J, Taketo M, Schjerven H, Jellusova J, Kothari S, Davids M, Müschen M. Repurposing GSK3B Small Molecule Inhibitors for Refractory Lymphoid Malignancies. Blood 2023, 142: 2818. DOI: 10.1182/blood-2023-190522.Peer-Reviewed Original ResearchFavorable safety profileSmall molecule inhibitorsT-lymphoid malignancyΒ-catenin degradationLymphoid malignanciesΒ-cateninInteractome studiesSafety profileClinical trialsMolecule inhibitorsLow nanomolar concentrationsΒ-catenin accumulationSolid tumorsRefractory B-cell malignanciesCell deathPK/PD profilesZinc finger proteinRefractory lymphoid malignanciesChIP-seq analysisPhase 2 trialMYC target genesT-cell lymphomaColony formationRapid nuclear accumulationWnt/β-catenin pathway
2022
P11.46.A Whole exome sequencing identifies novel SLIT2 mutations in primary CNS lymphoma
Kaulen L, Erson-Omay E, Henegariu O, Karschnia P, Huttner A, Günel M, Baehring J. P11.46.A Whole exome sequencing identifies novel SLIT2 mutations in primary CNS lymphoma. Neuro-Oncology 2022, 24: ii68-ii68. PMCID: PMC9443199, DOI: 10.1093/neuonc/noac174.235.Peer-Reviewed Original ResearchPrimary CNS lymphomaCNS lymphomaOverall survivalExtension cohortEpstein-Barr virus statusKaplan-Meier methodLog-rank testCBio Cancer Genomics PortalReporter luciferase assaysFree survivalShorter OSTumor DNA samplesPCNSL patientsClinical outcomesShorter PFSSomatic insertions/deletionsVirus statusFavorable outcomeLymphoid malignanciesClinical observationsTumor tissuePersonalized careCDKN2A lossCopy number alterationsCohortSYK and ZAP70 kinases in autoimmunity and lymphoid malignancies
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cellular Signalling 2022, 94: 110331. PMID: 35398488, DOI: 10.1016/j.cellsig.2022.110331.Peer-Reviewed Original ResearchConceptsChronic lymphocytic leukemiaB-cell malignanciesT cell receptorB cell receptorB-cell chronic lymphocytic leukemiaPathological B-cellsPoor clinical outcomeAcute lymphoblastic leukemiaExpression of SykT lymphocyte developmentClinical outcomesAggressive diseaseActivation of NFATAutoimmune diseasesLymphoblastic leukemiaT lymphocytesLymphocytic leukemiaCell lymphomaLymphoid malignanciesB cellsPI3K-pathwayOncogenic driversMalignancyNegative selectionPremalignant cells
2021
Exome sequencing identifies SLIT2 variants in primary CNS lymphoma
Kaulen LD, Erson‐Omay E, Henegariu O, Karschnia P, Huttner A, Günel M, Baehring JM. Exome sequencing identifies SLIT2 variants in primary CNS lymphoma. British Journal Of Haematology 2021, 193: 375-379. PMID: 33481259, DOI: 10.1111/bjh.17319.Peer-Reviewed Original ResearchConceptsPrimary central nervous system lymphomaShorter progression-free survivalCentral nervous system lymphomaRole of SLIT2Primary CNS lymphomaProgression-free survivalLarger validation cohortNervous system lymphomaShorter overall survivalPossible prognostic implicationsWarrants further investigationCNS lymphomaTumor DNA samplesOverall survivalPCNSL patientsSystem lymphomaPrognostic implicationsValidation cohortPCNSL pathogenesisLymphoid malignanciesFunction variantsTumor suppressor geneExome sequencingLuciferase assayLymphoma
2020
The utility and limitations of B- and T-cell gene rearrangement studies in evaluating lymphoproliferative disorders
Mendoza H, Tormey CA, Rinder HM, Howe JG, Siddon AJ. The utility and limitations of B- and T-cell gene rearrangement studies in evaluating lymphoproliferative disorders. Pathology 2020, 53: 157-165. PMID: 33358756, DOI: 10.1016/j.pathol.2020.09.024.Peer-Reviewed Original ResearchConceptsTCR gene rearrangement analysisGene rearrangement analysisPolymerase chain reactionRearrangement analysisLymphocyte populationsLymphoid malignanciesT-cell receptor gene rearrangement analysisT-cell gene rearrangement studiesTCR gene rearrangement patternsT cell populationsGene rearrangement studiesNext-generation sequencingGene rearrangement patternsLymphoproliferative disorders
2019
Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study
O’Connor O, Falchi L, Lue JK, Marchi E, Kinahan C, Sawas A, Deng C, Montanari F, Amengual JE, Kim HA, Rada AM, Khan K, Jacob AT, Malanga M, Francescone MM, Nandakumar R, Soderquist CR, Park DC, Bhagat G, Cheng B, Risueño A, Menezes D, Shustov AR, Sokol L, Scotto L. Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study. Blood 2019, 134: 1395-1405. PMID: 31471376, DOI: 10.1182/blood.2019001285.Peer-Reviewed Original ResearchConceptsPeripheral T-cell lymphomaPhase 1 studyDay 1Day 8Response rateMulticenter phase 1 studyT-cell lymphoma patientsAdvanced lymphoid malignanciesTreatment-related deathsComplete response rateCoprimary end pointsGrade 3 thrombocytopeniaGrade 4 neutropeniaGrade 4 thrombocytopeniaOverall response rateT-cell lymphomaNon-T-cell lymphomasTumor mutational profileHistone deacetylase inhibitorsPTCL patientsPleural effusionLymphoma patientsLymphoid malignanciesEpigenetic modifiersPatients
2015
The Value and Relevance of the T Cell Lymphoma Registries and International Collaborations: the Case of COMPLETE and the T-Cell Project
Bellei M, Nabhan C, Pesce EA, Conte L, Vose JM, Foss F, Federico M. The Value and Relevance of the T Cell Lymphoma Registries and International Collaborations: the Case of COMPLETE and the T-Cell Project. Current Hematologic Malignancy Reports 2015, 10: 448-455. PMID: 26449717, DOI: 10.1007/s11899-015-0291-0.Peer-Reviewed Original ResearchConceptsPeripheral T-cell lymphomaT-cell ProjectLymphoma RegistryCell lymphomaManagement of PTCLFuture clinical trialsOptimal therapeutic strategyT-cell lymphomaB-cell lymphomaPoor prognosisLymphoma treatmentLarge registriesClinical trialsLymphoid malignanciesTherapeutic strategiesNew agentsRegistryHeterogeneous groupPrognosisLymphomaDnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation
Mayle A, Yang L, Rodriguez B, Zhou T, Chang E, Curry C, Challen G, Li W, Wheeler D, Rebel V, Goodell M. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 2015, 125: 629-638. PMID: 25416277, PMCID: PMC4304108, DOI: 10.1182/blood-2014-08-594648.Peer-Reviewed Original ResearchConceptsHematologic malignanciesDNMT3A mutationsB-cell acute lymphocytic leukemiaAcute lymphocytic leukemiaSpectrum of malignanciesAcute myeloid leukemiaStem cellsPreleukemic phenotypeMyelodysplastic syndromePoor prognosisMyeloid leukemiaLymphocytic leukemiaLymphoid malignanciesMouse modelIrradiated micePrimary myelofibrosisMalignancyPreleukemic cellsLoss of functionDNA methyltransferase 3AMalignant transformationHematopoietic stem cellsMyeloid diseasesLeukemiaLymphoid lineage
2011
The RAG2 C terminus suppresses genomic instability and lymphomagenesis
Deriano L, Chaumeil J, Coussens M, Multani A, Chou Y, Alekseyenko AV, Chang S, Skok JA, Roth DB. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature 2011, 471: 119-123. PMID: 21368836, PMCID: PMC3174233, DOI: 10.1038/nature09755.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtaxia Telangiectasia Mutated ProteinsCell Cycle ProteinsChromosome DeletionChromosomes, MammalianDisease ProgressionDNA-Binding ProteinsGene Rearrangement, T-LymphocyteGenes, Immunoglobulin Heavy ChainGenes, p53Genomic InstabilityIn Situ Hybridization, FluorescenceKaplan-Meier EstimateLymphomaMiceProtein Serine-Threonine KinasesReceptors, Antigen, T-CellRecombination, GeneticThymus GlandTranslocation, GeneticTumor Suppressor ProteinsConceptsRAG2 C terminusGenomic instabilityC-terminusTCRα/δDNA double-strand breaksT-cell receptor lociDouble-strand breaksGenomic stabilityComplex chromosomal translocationReceptor locusChromosomal translocationsSimilar defectsLymphomagenesisThymic lymphomasTerminusLociRecombinaseTailRAG2TranslocationDeletionRecombinationRoleLymphoid malignanciesMice
2010
Overview of the Lymphoid Neoplasms
Podoltsev N, Lacy J, Vose J. Overview of the Lymphoid Neoplasms. 2010, 3-39. DOI: 10.1007/978-1-4419-7668-0_1.Peer-Reviewed Original ResearchNon-Hodgkin lymphomaHodgkin's lymphomaPathogenesis of lymphomaHistologic featuresEtiologic factorsCommon subtypeWHO classificationTreatment outcomesCell neoplasmsClinical aspectsClinical groupingLymphoid malignanciesLymphoma pathogenesisLymphoid cellsLymphoid neoplasmsNormal lymphocytesLymphomaImmune systemDistinct subtypesNeoplasmsLymphocyte developmentSecond portionPathogenesisSubtypesGenetic events
2006
Immunomodulatory Effects of Rexinoids
Foss F. Immunomodulatory Effects of Rexinoids. Seminars In Oncology 2006, 33: 21-25. PMID: 16516672, DOI: 10.1053/j.seminoncol.2005.12.019.Peer-Reviewed Original ResearchConceptsImmunomodulatory effectsCutaneous T-cell lymphomaReceptor-targeted therapyImproved clinical outcomesT-cell lymphomaPractical clinical approachExtracorporeal photophoresisClinical outcomesDenileukin diftitoxTherapy optionsHematologic malignanciesClinical activityPharmacotherapeutic agentsLymphoid malignanciesClinical approachTumor cellsRexinoidsMalignancyTreatmentDiftitoxLymphomaTherapy
2004
UV-Induced B-Cell Lymphomas in p53 Heterozygous Mice.
Miyahara Y, Kazimi N, Multani A, Pathak S, Chang S, Angkasekwinai Y, Qin X, Ullrich S. UV-Induced B-Cell Lymphomas in p53 Heterozygous Mice. Blood 2004, 104: 1370. DOI: 10.1182/blood.v104.11.1370.1370.Peer-Reviewed Original ResearchB-cell lymphomaP53 heterozygous miceHeterozygous miceLymph nodesTumor cellsBone marrowUV-induced skin cancerUV-irradiated miceNon-skin cancerB-cell originWild-type miceUseful animal modelCell linesSkin cancer inductionSystemic immunosuppressionIL-10Mature B cellsFS40 sunlampsAggressive tumorsLymphoid organsSubcutaneous injectionB7-1B7-2Spleen cellsLymphoid malignancies
2002
Immunomodulatory effects of RXR rexinoids: modulation of high-affinity IL-2R expression enhances susceptibility to denileukin diftitox
Gorgun G, Foss F. Immunomodulatory effects of RXR rexinoids: modulation of high-affinity IL-2R expression enhances susceptibility to denileukin diftitox. Blood 2002, 100: 1399-1403. PMID: 12149223, DOI: 10.1182/blood-2002-01-0300.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicAlitretinoinAntineoplastic AgentsB-LymphocytesBexaroteneDiphtheria ToxinGene Expression RegulationHumansInterleukin-2Leukemia-Lymphoma, Adult T-CellLeukemia, Lymphocytic, Chronic, B-CellPrecursor B-Cell Lymphoblastic Leukemia-LymphomaReceptors, Interleukin-2Receptors, Retinoic AcidRecombinant Fusion ProteinsRetinoid X ReceptorsRetinoidsT-LymphocytesTetrahydronaphthalenesTranscription FactorsTretinoinTumor Cells, CulturedConceptsRetinoic acid receptorsImmunomodulatory effectsIL-2RHigh affinity IL-2R expressionCutaneous T-cell lymphomaHigh affinity IL-2R.Interleukin-2 receptor expressionIL-2R expressionT-cell lymphomaB cell leukemia cellsB-cell leukemiaT-cell leukemiaMechanism of actionAutoimmune diseasesHematologic malignanciesClinical activityReceptor expressionLymphoid malignanciesIL-2R.Retinoid X receptor (RXR) familyP75 subunitAcid receptorsRexinoid receptorsLeukemia cellsRexinoids
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply