2025
Template switching during DNA replication is a prevalent source of adaptive gene amplification
Chuong J, Nun N, Suresh I, Matthews J, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. ELife 2025, 13: rp98934. PMID: 39899365, PMCID: PMC11790251, DOI: 10.7554/elife.98934.Peer-Reviewed Original ResearchConceptsCopy number variantsLong terminal repeatTemplate switchingDNA replicationDynamics of copy number variantsCNV formationEffect of copy number variantsOrigin of DNA replicationSource of genetic variationFitness effectsLocal DNA featuresSaccharomyces cerevisiae</i>Gene amplificationGenome architectureGenome evolutionGenomic elementsGenomic locationsDNA elementsAdaptive evolutionLagging strandEngineered strainGenetic variationHomologous recombinationFrequent amplificationRate of adaptationTemplate switching during DNA replication is a prevalent source of adaptive gene amplification
Chuong J, Ben Nun N, Suresh I, Matthews J, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. ELife 2025, 13 DOI: 10.7554/elife.98934.3.Peer-Reviewed Original ResearchCopy number variantsGAP1 CNVsLong terminal repeatTemplate switchingDNA replicationDynamics of copy number variantsCNV formationEffect of copy number variantsOrigin of DNA replicationSource of genetic variationFitness effectsLocal DNA featuresGene amplificationGAP1 geneGenome architectureGenome evolutionGenomic elementsGenomic locationsDNA elementsSaccharomyces cerevisiaeAdaptive evolutionLagging strandEngineered strainGenetic variationHomologous recombination
2024
A virus associated with the zoonotic pathogen Plasmodium knowlesi causing human malaria is a member of a diverse and unclassified viral taxon
Petrone M, Charon J, Grigg M, William T, Rajahram G, Westaway J, Piera K, Shi M, Anstey N, Holmes E. A virus associated with the zoonotic pathogen Plasmodium knowlesi causing human malaria is a member of a diverse and unclassified viral taxon. Virus Evolution 2024, 10: veae091. PMID: 39619416, PMCID: PMC11605544, DOI: 10.1093/ve/veae091.Peer-Reviewed Original ResearchViral taxaRNA virusesAnalysis of metagenomic dataPlasmodium speciesSingle-celled eukaryotesHuman-infecting Plasmodium speciesPathogen life cycleGenome architectureGroup of virusesMetagenomic dataMetagenomic sequencingDisease-causingVirus discoveryTaxaViral diversityParasite PlasmodiumRNAInfecting protozoaPlasmodium knowlesiViromeHuman malariaParasite fitnessSpeciesApicomplexaInfect humansAn RNA-centric view of transcription and genome organization
Henninger J, Young R. An RNA-centric view of transcription and genome organization. Molecular Cell 2024, 84: 3627-3643. PMID: 39366351, PMCID: PMC11495847, DOI: 10.1016/j.molcel.2024.08.021.Peer-Reviewed Original ResearchConceptsGene regulationGenome architectureTranscriptional regulationModel of transcriptional regulationAssembly of protein complexesAssembly of transcription complexesLocal genome architectureSilencing of genesGenomic compartmentsGenome organizationGenomic structureRNA polymeraseChromatin regulationTranscription complexActive genesProtein complexesRNA moleculesTranscription factorsGenomeProtein kinaseSpecific genesGenesFeedback regulationRNASpatial compartments
2023
Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome
Rahman S, Dong P, Apontes P, Fernando M, Kosoy R, Townsley K, Girdhar K, Bendl J, Shao Z, Misir R, Tsankova N, Kleopoulos S, Brennand K, Fullard J, Roussos P. Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome. Nucleic Acids Research 2023, 51: 11142-11161. PMID: 37811875, PMCID: PMC10639075, DOI: 10.1093/nar/gkad798.Peer-Reviewed Original ResearchConceptsChromatin interactomeNeural developmentSpecific gene expressionEnhancer-promoter loopsDistinct cell typesGenome compartmentalizationRepressive compartmentGenome architectureFine-scale changesGenome structureChromatin loopsGWAS lociTAD boundariesTranscriptional inactivationActive promotersGene expressionInteractomeGenomeCell typesComplex organDisease mechanismsHuman brainAdult prefrontal cortexAdult human brainNeurodevelopmental processes
2021
TAD-like single-cell domain structures exist on both active and inactive X chromosomes and persist under epigenetic perturbations
Cheng Y, Liu M, Hu M, Wang S. TAD-like single-cell domain structures exist on both active and inactive X chromosomes and persist under epigenetic perturbations. Genome Biology 2021, 22: 309. PMID: 34749781, PMCID: PMC8574027, DOI: 10.1186/s13059-021-02523-8.Peer-Reviewed Original ResearchConceptsInactive X chromosomeActive X chromosomeMajor epigenetic componentsSingle-cell domainsX chromosomeEpigenetic componentsThree-dimensional genome architectureGlobal epigenetic landscapeFemale human cellsLoop extrusion mechanismSame genomic regionGenome architectureChromatin domainsTAD structureChromatin compactionEpigenetic landscapeTAD boundariesChromatin foldingGenomic regionsChromosome copiesGenomic techniquesEpigenetic perturbationsEpigenetic interactionsDistinct cell linesChromosomesComprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms
Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Molecular Cell 2021, 81: 584-598.e5. PMID: 33444546, PMCID: PMC7775661, DOI: 10.1016/j.molcel.2020.12.041.Peer-Reviewed Original ResearchConceptsRNA structureSecondary structureRNA virusesSARS-CoV-2 RNA genomeNovel regulatory motifsSingle-nucleotide resolutionDownstream functional analysisRNA drug targetsPositive-sense RNA virusesGenome architectureGenomic structureEvolutionary analysisRegulatory motifsSARS-CoV-2 genomeViral life cycleRNA genomeFunctional analysisGenomeDrug targetsPrimer designInfected cellsViral RNADepth structural analysisLife cycleΒ-coronavirus
2020
The whale shark genome reveals how genomic and physiological properties scale with body size
Weber J, Park S, Luria V, Jeon S, Kim H, Jeon Y, Bhak Y, Jun J, Kim S, Hong W, Lee S, Cho Y, Karger A, Cain J, Manica A, Kim S, Kim J, Edwards J, Bhak J, Church G. The whale shark genome reveals how genomic and physiological properties scale with body size. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 20662-20671. PMID: 32753383, PMCID: PMC7456109, DOI: 10.1073/pnas.1922576117.Peer-Reviewed Original ResearchConceptsWhale shark genomeShark genomeBody sizeGene lengthWhale sharksLarge-scale comparative genomic analysisLong neural genesMetazoan genome architectureSlow evolutionary rateComparative genomics approachLonger gene lengthComparative genomic analysisMultiple genetic featuresCodon adaptation indexMetabolic rateAverage geneGenome architectureNeurodegeneration genesEvolutionary ratesMost genomesGenomic approachesGenomic traitsNeural genesGenome featuresBiological traits
2017
Developmentally regulated higher-order chromatin interactions orchestrate B cell fate commitment
Boya R, Yadavalli AD, Nikhat S, Kurukuti S, Palakodeti D, Pongubala JMR. Developmentally regulated higher-order chromatin interactions orchestrate B cell fate commitment. Nucleic Acids Research 2017, 45: 11070-11087. PMID: 28977418, PMCID: PMC5737614, DOI: 10.1093/nar/gkx722.Peer-Reviewed Original ResearchConceptsChromatin reorganizationHigher-order chromatin interactionsGenome-wide expression profilesCell fate choiceCell fate determinationCell fate commitmentHi-C analysisMulti-potent progenitorsB cell fate determinationGene expression patternsB cell fate choicesChromatin architectureGenome architectureGenome organizationChromatin interactionsTranscription regulationEpigenetic landscapeFate determinationGenomic lociFate commitmentB compartmentsCommitted stateDevelopmental switchInteraction landscapeExpression patterns
2014
A Role for Noncoding Variation in Schizophrenia
Roussos P, Mitchell A, Voloudakis G, Fullard J, Pothula V, Tsang J, Stahl E, Georgakopoulos A, Ruderfer D, Charney A, Okada Y, Siminovitch K, Worthington J, Padyukov L, Klareskog L, Gregersen P, Plenge R, Raychaudhuri S, Fromer M, Purcell S, Brennand K, Robakis N, Schadt E, Akbarian S, Sklar P. A Role for Noncoding Variation in Schizophrenia. Cell Reports 2014, 9: 1417-1429. PMID: 25453756, PMCID: PMC4255904, DOI: 10.1016/j.celrep.2014.10.015.Peer-Reviewed Original ResearchMeSH KeywordsArthritis, RheumatoidCalcium Channels, L-TypeDatabases, GeneticDNA, IntergenicEnhancer Elements, GeneticGene Expression RegulationGenetic LociGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansMolecular Sequence AnnotationOrgan SpecificityPolymorphism, Single NucleotidePromoter Regions, GeneticProtein BindingRisk FactorsSchizophreniaConceptsExpression quantitative trait lociGenome-wide significant lociCommon variant lociQuantitative trait lociPluripotent stem cell-derived neuronsDistal regulatory elementsStem cell-derived neuronsPotential physical interactionsCell-derived neuronsRegulatory element sequencesPotential functional roleGenome architectureChromosomal loopingTranscriptional regulationFunctional annotationTrait lociSignificant lociNoncoding SNPsRegulatory elementsNoncoding variationsRisk lociVariant lociUnknown functionFunctional linkElement sequences
2013
Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms
Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, Layer RM, Quinlan AR, Hall IM. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Research 2013, 23: 762-776. PMID: 23410887, PMCID: PMC3638133, DOI: 10.1101/gr.143677.112.Peer-Reviewed Original ResearchConceptsComplex genomic rearrangementsSingle mutational eventCancer genomesMutational eventsBreakpoint clusterDNA double-strand breaksHomology-independent mechanismsComplex rearrangementsDouble-strand breaksLarge-scale rearrangementsGenome architectureGenome rearrangementsNonhomologous repairGenomic rearrangementsChromothripsis eventsSelective advantageMore chromosomesTumor genomesGenomeGlioblastoma samplesTemplated insertionsState profilingPunctuated changeBreakpoint sequencesAllele frequencies
2011
Assessing the Role of Tandem Repeats in Shaping the Genomic Architecture of Great Apes
Farré M, Bosch M, López-Giráldez F, Ponsà M, Ruiz-Herrera A. Assessing the Role of Tandem Repeats in Shaping the Genomic Architecture of Great Apes. PLOS ONE 2011, 6: e27239. PMID: 22076140, PMCID: PMC3208591, DOI: 10.1371/journal.pone.0027239.Peer-Reviewed Original ResearchConceptsEvolutionary breakpoint regionsTandem repeatsEvolutionary regionBreakpoint regionSpecific tandem repeatMore base pairsGreat apesGenome architectureMammalian genomesGenome organizationSynteny blocksChromatin conformationEvolutionary biologistsGenomic architectureAncestral reconstructionGenome instabilityMacaque genomeChromosomal reorganizationTransposable elementsGenomic regionsHuman genomeGenomic areasAlu elementsGenomeBase pairs
2005
Applying a new generation of genetic maps to understand human inflammatory disease
Hafler DA, Jager P. Applying a new generation of genetic maps to understand human inflammatory disease. Nature Reviews Immunology 2005, 5: 83-91. PMID: 15630431, DOI: 10.1038/nri1532.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply