2024
An integrative TAD catalog in lymphoblastoid cell lines discloses the functional impact of deletions and insertions in human genomes
Li C, Bonder M, Syed S, Jensen M, Consortium H, Group H, Gerstein M, Zody M, Chaisson M, Talkowski M, Marschall T, Korbel J, Eichler E, Lee C, Shi X. An integrative TAD catalog in lymphoblastoid cell lines discloses the functional impact of deletions and insertions in human genomes. Genome Research 2024, 34: 2304-2318. PMID: 39638559, PMCID: PMC11694747, DOI: 10.1101/gr.279419.124.Peer-Reviewed Original ResearchConceptsTopologically associating domainsTopologically associating domains boundariesImpact of structural variantsLymphoblastoid cell linesStructural variantsHuman genomeGene regulationAdjacent TADsHuman lymphoblastoid cell linesCell linesSub-TADGenomic structureInsulate genesChromatin architectureImpact of deletionChromatin structureGenomeAberrant regulationAnalysis pipelineMammalian speciesGenesCCREsFunctional impactChromatinRegulation
2023
Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo
May D, Yun S, Gonzalez D, Park S, Chen Y, Lathrop E, Cai B, Xin T, Zhao H, Wang S, Gonzalez L, Cockburn K, Greco V. Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo. ELife 2023, 12: e83444. PMID: 36880644, PMCID: PMC10027315, DOI: 10.7554/elife.83444.Peer-Reviewed Original ResearchConceptsStem cell differentiationCell differentiationStem cell compartmentCompaction changesChromatin compaction statesDynamic transcriptional statesCell compartmentChromatin architectureCell cycle statusChromatin rearrangementNascent RNATranscriptional burstingTranscriptional statesLive imagingTissue contextGene expressionDifferentiating cellsGlobal remodelingIndividual cellsCycle statusStem cellsDifferentiation statusDifferentiationCellsMorphological changes
2022
Deep generative modeling and clustering of single cell Hi-C data
Liu Q, Zeng W, Zhang W, Wang S, Chen H, Jiang R, Zhou M, Zhang S. Deep generative modeling and clustering of single cell Hi-C data. Briefings In Bioinformatics 2022, 24: bbac494. PMID: 36458445, DOI: 10.1093/bib/bbac494.Peer-Reviewed Original ResearchConceptsCell-to-cell variabilityHi-C dataFormation of chromatin contactsHi-C analysisHi-C technologyArchitecture of DNAChromatin contactsGenome conformationChromatin architectureChromatin organizationGene regulationCellular functionsIndividual cellsCell typesComputational approachDeep generative neural networksComplex mechanismsGenerative neural networkDeep generative modelsCellsChromatinGenesDNAData clusteringNeural network
2020
Multiplexed imaging of nucleome architectures in single cells of mammalian tissue
Liu M, Lu Y, Yang B, Chen Y, Radda JSD, Hu M, Katz SG, Wang S. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nature Communications 2020, 11: 2907. PMID: 32518300, PMCID: PMC7283333, DOI: 10.1038/s41467-020-16732-5.Peer-Reviewed Original ResearchConceptsNucleome architecturesChromatin organizationMammalian tissuesNumerous RNA speciesNumerous genomic regionsSpecific chromatin architectureSurface of chromosomesSingle cellsDifferent cell typesMouse fetal liverChromatin architectureMultiplexed imagingChromatin loopsChromatin foldingGenomic functionsNuclear laminaGenomic regionsRNA speciesMultiple genomesGene expressionCopy numberCell typesDe novoGenomeSame cellsCancer-specific mutation of GATA3 disrupts the transcriptional regulatory network governed by Estrogen Receptor alpha, FOXA1 and GATA3
Takaku M, Grimm S, De Kumar B, Bennett B, Wade P. Cancer-specific mutation of GATA3 disrupts the transcriptional regulatory network governed by Estrogen Receptor alpha, FOXA1 and GATA3. Nucleic Acids Research 2020, 48: 4756-4768. PMID: 32232341, PMCID: PMC7229857, DOI: 10.1093/nar/gkaa179.Peer-Reviewed Original ResearchConceptsRegulatory networksAltered chromatin architectureTranscriptional regulatory networksDifferential gene expressionEpithelial cell biologyTranscription factor FOXA1Mammary epithelial cellsEstrogen receptor alphaCancer-specific mutationsMammary gland developmentChromatin architectureChromatin localizationGenomic localizationReceptor alphaMutant cellsGenomic analysisNetwork downstreamGene setsCell biologyEstrogen receptorGene expressionGATA3 mutationsGland developmentSimilar mutationsFOXA1
2017
Developmentally regulated higher-order chromatin interactions orchestrate B cell fate commitment
Boya R, Yadavalli AD, Nikhat S, Kurukuti S, Palakodeti D, Pongubala JMR. Developmentally regulated higher-order chromatin interactions orchestrate B cell fate commitment. Nucleic Acids Research 2017, 45: 11070-11087. PMID: 28977418, PMCID: PMC5737614, DOI: 10.1093/nar/gkx722.Peer-Reviewed Original ResearchConceptsChromatin reorganizationHigher-order chromatin interactionsGenome-wide expression profilesCell fate choiceCell fate determinationCell fate commitmentHi-C analysisMulti-potent progenitorsB cell fate determinationGene expression patternsB cell fate choicesChromatin architectureGenome architectureGenome organizationChromatin interactionsTranscription regulationEpigenetic landscapeFate determinationGenomic lociFate commitmentB compartmentsCommitted stateDevelopmental switchInteraction landscapeExpression patterns
2016
CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells
Steiner LA, Schulz V, Makismova Y, Lezon-Geyda K, Gallagher PG. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells. PLOS ONE 2016, 11: e0155378. PMID: 27219007, PMCID: PMC4878738, DOI: 10.1371/journal.pone.0155378.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesCCCTC-Binding FactorCells, CulturedChromatinChromatin ImmunoprecipitationErythroid CellsErythropoiesisGene Expression ProfilingHematopoietic Stem CellsHigh-Throughput Nucleotide SequencingHumansK562 CellsNuclear ProteinsPromoter Regions, GeneticProtein BindingProtein Interaction MapsRepressor ProteinsSequence Analysis, RNAConceptsPrimary human erythroid cellsRepressive chromatin domainsHuman erythroid cellsChromatin domainsErythroid cellsChromatin architectureGene promoterGene expressionPrimary human hematopoietic stemCell type-specific mannerCritical cellular processesSites of CTCFGenome-wide dataHigh-throughput sequencingMRNA transcriptome analysisHuman hematopoietic stemRepressive chromatinCohesin sitesProtein occupancyInsulator functionRepressive domainsTranscriptional regulationCTCF sitesDomain architectureRelated gene expressionSetd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation
Li Y, Schulz VP, Deng C, Li G, Shen Y, Tusi BK, Ma G, Stees J, Qiu Y, Steiner LA, Zhou L, Zhao K, Bungert J, Gallagher PG, Huang S. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Research 2016, 44: 7173-7188. PMID: 27141965, PMCID: PMC5009724, DOI: 10.1093/nar/gkw327.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, NuclearCell LineageCells, CulturedChromatinChromatin Assembly and DisassemblyChromatin ImmunoprecipitationErythroblastsErythrocyte CountErythrocytesErythropoiesisFemaleGene Expression RegulationHemoglobinsHistone-Lysine N-MethyltransferaseHistonesHumansLysineMaleMethylationMiceMice, KnockoutMicrococcal NucleaseMultiprotein ComplexesNerve Tissue ProteinsPromoter Regions, GeneticSpleenTranscription FactorsUpstream Stimulatory FactorsConceptsNURF complexChromatin dynamicsErythroid genesLineage commitmentAdult β-globin geneErythroid gene promotersErythroid lineage differentiationCell context-dependent mannerErythroid lineage commitmentChromatin structural alterationsContext-dependent mannerΒ-globin geneChromatin architectureEnhancer accessibilityChromatin accessibilityNucleosome repositioningTranscription regulationChromatin structureH3K4 methylationGene regulationComplex occupancyMammalian cellsGene activationGene transcriptionLineage differentiation
2011
Recombination centres and the orchestration of V(D)J recombination
Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology 2011, 11: 251-263. PMID: 21394103, DOI: 10.1038/nri2941.Peer-Reviewed Original ResearchConceptsAntigen receptor genesRecombination signal sequencesSignal sequenceHigher-order chromatin architectureHistone H3 lysine 4Receptor geneAntigen receptor gene segmentsInactive nuclear compartmentsPlant homeodomain (PHD) fingerH3 lysine 4Antigen receptor lociReceptor gene segmentsEctopic recruitmentChromatin architectureChromatin structureLysine 4Active chromatinGenome instabilityHistone modificationsRAG2 proteinsThousands of sitesNuclear compartmentRecombination eventsTranscriptional activityGenomic DNA
2009
Patterns of Monomethylation of Histone H3 Lysine 27 Influence Gene Expression in a Cell-Type Specific Manner.
Steiner L, Schulz V, Maksimova Y, Wong C, Tuck D, Gallagher P. Patterns of Monomethylation of Histone H3 Lysine 27 Influence Gene Expression in a Cell-Type Specific Manner. Blood 2009, 114: 4585. DOI: 10.1182/blood.v114.22.4585.4585.Peer-Reviewed Original ResearchTranscription start siteNon-erythroid cellsPost-translational histone modificationsHistone H3 lysine 27Cell type-specific mannerH3 lysine 27Gene expressionGene repressionHistone modificationsActive transcriptionLysine 27Start siteHistone H3 lysine 4Expression arraysHistone H3 lysine 9Beta-globin locusH3 lysine 4Regions of heterochromatinH3 lysine 9Influence gene expressionMRNA transcript analysisType-specific mannerCell-type specificGene expression variesChromatin architectureChromatin Architecture and Transcription Factor Binding Regulate Expression of Erythrocyte Membrane Protein Genes
Steiner LA, Maksimova Y, Schulz V, Wong C, Raha D, Mahajan MC, Weissman SM, Gallagher PG. Chromatin Architecture and Transcription Factor Binding Regulate Expression of Erythrocyte Membrane Protein Genes. Molecular And Cellular Biology 2009, 29: 5399-5412. PMID: 19687298, PMCID: PMC2756878, DOI: 10.1128/mcb.00777-09.Peer-Reviewed Original ResearchMeSH KeywordsBasic Helix-Loop-Helix Transcription FactorsChromatinErythrocyte MembraneErythrocytesGATA1 Transcription FactorGene Expression RegulationHeLa CellsHistone DeacetylasesHumansMembrane ProteinsNF-E2 Transcription Factor, p45 SubunitNuclear ProteinsProto-Oncogene ProteinsRepressor ProteinsT-Cell Acute Lymphocytic Leukemia Protein 1Transcription FactorsConceptsErythrocyte membrane protein genesMembrane protein geneNF-E2 bindingGATA-1Protein geneChromatin architectureFOG-1Nonerythroid cellsBinding motifDynamic chromatin architectureHistone H3 trimethylationNF-E2Numerous candidate regionsTranscription factor bindingGATA-1 bindingTranscriptional start siteComplex genetic lociParallel DNA sequencingGenomic organizationLocus structureLysine 4H3 trimethylationGene regulationChromatin immunoprecipitationStart site
2008
Chromatin Architecture and Transcription Factor Occupancy of Erythrocyte Membrane Genes Studied by Chromatin Immunoprecipitation on Microarrays (ChIP-chip)
Steiner L, Maksimova Y, Wong C, Schulz V, Gallagher P. Chromatin Architecture and Transcription Factor Occupancy of Erythrocyte Membrane Genes Studied by Chromatin Immunoprecipitation on Microarrays (ChIP-chip). Blood 2008, 112: 2436. DOI: 10.1182/blood.v112.11.2436.2436.Peer-Reviewed Original ResearchErythrocyte membrane protein genesNF-E2 siteMembrane protein geneGATA-1 sitesTranscriptional start siteChromatin architectureTranscription factor bindingPrimary erythroid cellsGATA-1Protein geneChromatin immunoprecipitationTranscription factorsErythroid cellsH3K4me3 enrichmentFlanking DNAFactor bindingDNA sequencesK562 cellsErythroid transcription factor GATA-1Mapping protein-DNA interactionsNon-erythroid cell linesTranscription factor GATA-1Quantitative ChIP analysisTranscription factor occupancyGenome-wide scale
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply