2023
Cannabinoid regulation of neurons in the dentate gyrus during epileptogenesis: Role of CB1R‐associated proteins and downstream pathways
Lafourcade C, Sparks F, Bordey A, Wyneken U, Mohammadi M. Cannabinoid regulation of neurons in the dentate gyrus during epileptogenesis: Role of CB1R‐associated proteins and downstream pathways. Epilepsia 2023, 64: 1432-1443. PMID: 36869624, DOI: 10.1111/epi.17569.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyDentate gyrusStatus epilepticusProgression of epileptogenesisHippocampal dentate gyrusRole of CB1RCannabinoid regulationHippocampal excitabilityRecurrent seizuresLobe epilepsyRecent findingsEndogenous cannabinoidsBrain injuryClinical trialsEpileptic dischargesNeurologic disordersRetrograde messengerDG circuitryHippocampal formationNeuronal activityTherapeutic interventionsSeizuresEpileptogenesisExcessive excitationCannabinoids
2022
Epileptiform activity predicts epileptogenesis in cerebral hemorrhage
Kong THJ, Azeem M, Naeem A, Allen S, Kim JA, Struck AF. Epileptiform activity predicts epileptogenesis in cerebral hemorrhage. Annals Of Clinical And Translational Neurology 2022, 9: 1475-1480. PMID: 36030385, PMCID: PMC9463945, DOI: 10.1002/acn3.51637.Peer-Reviewed Original ResearchConceptsEpileptiform activitySubarachnoid hemorrhageRisk factorsRetrospective case-control studyNontraumatic intraparenchymal hemorrhagesDevelopment of epilepsyCase-control studyS scoresClinical seizuresAcute phaseCerebral hemorrhageIntraparenchymal hemorrhageHemorrhageSeizuresEpilepsyScoresEpileptogenesisPatientsActivityIntraparenchymal
2021
International Post Stroke Epilepsy Research Consortium (IPSERC): A consortium to accelerate discoveries in preventing epileptogenesis after stroke
Mishra NK, Engel J, Liebeskind DS, Sharma VK, Hirsch LJ, Kasner SE, French JA, Devinsky O, Friedman A, Dawson J, Quinn TJ, Selim M, de Havenon A, Yasuda CL, Cendes F, Benninger F, Zaveri HP, Burneo JG, Srivastava P, Singh M, Bhatia R, Vishnu VY, Bentes C, Ferro J, Weiss S, Sivaraju A, Kim JA, Galovic M, Gilmore EJ, Pitkänen A, Davis K, Sansing LH, Sheth KN, Paz JT, Singh A, Sheth S, Worrall BB, Grotta JC, Casillas-Espinos PM, Chen Z, Nicolo JP, Yan B, Kwan P, Consortium F. International Post Stroke Epilepsy Research Consortium (IPSERC): A consortium to accelerate discoveries in preventing epileptogenesis after stroke. Epilepsy & Behavior 2021, 127: 108502. PMID: 34968775, DOI: 10.1016/j.yebeh.2021.108502.Peer-Reviewed Original ResearchConvergent and Divergent Mechanisms of Epileptogenesis in mTORopathies
Nguyen LH, Bordey A. Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies. Frontiers In Neuroanatomy 2021, 15: 664695. PMID: 33897381, PMCID: PMC8064518, DOI: 10.3389/fnana.2021.664695.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsPI3K-mTOR pathwayCortical developmentGene variantsPotential therapeutic strategyIntractable epilepsyNeuronal placementTherapeutic strategiesAnimal modelsEpilepsyElectrophysiological phenotypeNeurodevelopmental disordersRapamycin complex 1Mechanistic targetEpileptogenesisIndependent mechanismsMTORopathiesGATOR1 complexPersonalized medicineDivergent mechanismsMosaic patternEverolimusMalformationsHyperactivityPathwayVariantsNetwork-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis
Dhaher R, Gruenbaum SE, Sandhu MRS, Ottestad-Hansen S, Tu N, Wang Y, Lee TW, Deshpande K, Spencer DD, Danbolt NC, Zaveri HP, Eid T. Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis. Neurology 2021, 96: e2261-e2271. PMID: 33722994, PMCID: PMC8166437, DOI: 10.1212/wnl.0000000000011846.Peer-Reviewed Original ResearchConceptsSpontaneous seizuresSeizure propagationSeizure focusMesial temporal lobe epilepsyExtracellular brain levelsTemporal lobe epilepsyExtracellular glutamate levelsRelevant rodent modelsGlutamine synthetase inhibitor methionine sulfoximineTransporter subtype 1Contralateral hippocampusLobe epilepsyBrain levelsBrain microdialysisExtracellular GABANeurotransmitter levelsSeizure initiationGlutamate levelsSeizure onsetEpilepsy networkRodent modelsSubtype 1EpileptogenesisHippocampusBrain regions
2018
A Brain–Heart Biomarker for Epileptogenesis
Bahari F, Ssentongo P, Schiff S, Gluckman B. A Brain–Heart Biomarker for Epileptogenesis. Journal Of Neuroscience 2018, 38: 8473-8483. PMID: 30150365, PMCID: PMC6158692, DOI: 10.1523/jneurosci.1130-18.2018.Peer-Reviewed Original ResearchConceptsBrain-heart interactionsBiomarkers of epileptogenesisDevelopment of epilepsyAutonomic cardiac activityIdentification of patientsPostinjury epilepsyPreventable sequelaeFirst seizureBrain insultsCortical dischargesMale miceEpileptogenesisMurine modelMouse modelCardiac rhythmReliable biomarkersEpilepsyChronic measurementTreatment developmentBiomarkersSuch treatmentCardiac activityTherapeutic purposesBrain activityPatients
2017
Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis
Ye H, Kaszuba S. Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis. Journal Of Biomedical Science 2017, 24: 93. PMID: 29202749, PMCID: PMC5715558, DOI: 10.1186/s12929-017-0399-8.Peer-Reviewed Original ResearchConceptsGABAergic interneuronsEpileptic circuitrySeizure suppressionGABA depletionSeizure controlExcitatory effectsGABAergic cellsGABAergic inhibitionNetwork hyperexcitabilityPyramidal neuronsNeuronal balancePyramidal cellsEpileptic circuitsInhibitory neuronsPostsynaptic neuronsGABA receptorsPostsynaptic cellInterneuronsOptogenetic excitationOptogenetic protocolsCircuitry levelEpileptogenesisOptogenetic interrogationInhibitory effectContext-dependent roleBreakdown of Thalamo-Cortical Connectivity Precedes Spike Generation in Focal Epilepsies
Chiosa V, Groppa S, Ciolac D, Koirala N, Mişina L, Winter Y, Moldovanu M, Muthuraman M, Groppa S. Breakdown of Thalamo-Cortical Connectivity Precedes Spike Generation in Focal Epilepsies. Brain Connectivity 2017, 7: 309-320. PMID: 28494616, DOI: 10.1089/brain.2017.0487.Peer-Reviewed Original ResearchConceptsFrontal lobeVentral anterior nucleusThalamo-cortical connectivityFuture therapeutic approachesSpike generationFocal epileptic seizuresMedial dorsalThalamic volumeFocal epilepsyAnterior nucleusFrontal cortexTherapeutic approachesEpileptic seizuresCerebral networksCortical integrityThalamusEEG recordingsWidespread areasDistinct patternsLobeEpileptogenesisPatientsEpilepsySeizuresCortexNetwork evolution in mesial temporal lobe epilepsy revealed by diffusion tensor imaging
Wang H, Huang Y, Coman D, Munbodh R, Dhaher R, Zaveri HP, Hyder F, Eid T. Network evolution in mesial temporal lobe epilepsy revealed by diffusion tensor imaging. Epilepsia 2017, 58: 824-834. PMID: 28378878, PMCID: PMC5429866, DOI: 10.1111/epi.13731.Peer-Reviewed Original ResearchConceptsMesial temporal lobe epilepsyDiffusion tensor imagingTemporal lobe epilepsyFractional anisotropyLobe epilepsyAstroglial glutamine synthetaseEntorhinal-hippocampal areaEpileptogenic hippocampal formationNumerous brain regionsMultiple brain areasBrain diffusion tensor imagingLater time pointsInfused ratsEpileptogenic processCorpus callosumEpileptogenesisHippocampal formationBrain areasImaging biomarkersEarly identificationBrain regionsRatsTensor imagingFA changesTime pointsA Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection
Ssentongo P, Robuccio A, Thuku G, Sim D, Nabi A, Bahari F, Shanmugasundaram B, Billard M, Geronimo A, Short K, Drew P, Baccon J, Weinstein S, Gilliam F, Stoute J, Chinchilli V, Read A, Gluckman B, Schiff S. A Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection. Scientific Reports 2017, 7: 43652. PMID: 28272506, PMCID: PMC5341121, DOI: 10.1038/srep43652.Peer-Reviewed Original ResearchConceptsCerebral malariaAnimal modelsStrain combinationsPrevention of epilepsySuch animal modelsSubsequent epilepsyNeurological sequelaeAdjunctive therapyPathophysiological mechanismsMalaria infectionUnexpected deathMurine modelEpilepsyPreclinical researchSUDEPMalariaGenetic backgroundMultiple miceEpileptogenesisSequelaeTherapyInfectionMiceSurvivorsPrevention
2015
The enigma of the latent period in the development of symptomatic acquired epilepsy — Traditional view versus new concepts
Löscher W, Hirsch LJ, Schmidt D. The enigma of the latent period in the development of symptomatic acquired epilepsy — Traditional view versus new concepts. Epilepsy & Behavior 2015, 52: 78-92. PMID: 26409135, DOI: 10.1016/j.yebeh.2015.08.037.Peer-Reviewed Original ResearchConceptsBrain injuryLatent periodBrain insultsAnimal modelsMajor unmet clinical needPre-epileptic stateProcess of epileptogenesisUnderstanding of epileptogenesisTraumatic brain injuryUnmet clinical needAntiepileptogenic agentsAntiepileptogenic treatmentsSymptomatic epilepsyHuman epilepsyTrial designFunctional alterationsEpileptogenesisEpilepsySubclinical epilepsyClinical needInjuryPatientsRecent dataInsultPeriod
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply