2025
Genome-wide analyses identify 30 loci associated with obsessive–compulsive disorder
Strom N, Gerring Z, Galimberti M, Yu D, Halvorsen M, Abdellaoui A, Rodriguez-Fontenla C, Sealock J, Bigdeli T, Coleman J, Mahjani B, Thorp J, Bey K, Burton C, Luykx J, Zai G, Alemany S, Andre C, Askland K, Bäckman J, Banaj N, Barlassina C, Nissen J, Bienvenu O, Black D, Bloch M, Børte S, Bosch R, Breen M, Brennan B, Brentani H, Buxbaum J, Bybjerg-Grauholm J, Byrne E, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini M, Ciullo V, Cook E, Crosby J, Cullen B, De Schipper E, Delorme R, Djurovic S, Elias J, Estivill X, Falkenstein M, Fundin B, Garner L, Gironda C, Goes F, Grados M, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler K, Hounie A, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson E, Kelley K, Klawohn J, Krasnow J, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin N, Meier S, Miguel E, Mulhern M, Nestadt P, Nurmi E, O’Connell K, Osiecki L, Ousdal O, Palviainen T, Pedersen N, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle M, Ripke S, Rosário M, Sampaio A, Schiele M, Skogholt A, Sloofman L, Smit J, Artigas M, Thomas L, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink N, Walker C, Wang Y, Wendland J, Winsvold B, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz K, Bulik C, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez T, Fyer A, Gaziano J, Geller D, Grabe H, Greenberg B, Hanna G, Hickie I, Hougaard D, Kathmann N, Kennedy J, Lai D, Landén M, Hellard S, Leboyer M, Lochner C, McCracken J, Medland S, Mortensen P, Neale B, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls D, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga J, Rasmussen S, Richter M, Rosenberg D, Ruhrmann S, Samuels J, Sandin S, Sandor P, Spalletta G, Stein D, Stewart S, Storch E, Stranger B, Turiel M, Werge T, Andreassen O, Børglum A, Walitza S, Hveem K, Hansen B, Rück C, Martin N, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart J, Breen G, Nestadt G, Kaprio J, Arnold P, Grice D, Knowles J, Ask H, Verweij K, Davis L, Smit D, Crowley J, Scharf J, Stein M, Gelernter J, Mathews C, Derks E, Mattheisen M. Genome-wide analyses identify 30 loci associated with obsessive–compulsive disorder. Nature Genetics 2025, 57: 1389-1401. PMID: 40360802, PMCID: PMC12165847, DOI: 10.1038/s41588-025-02189-z.Peer-Reviewed Original ResearchConceptsObsessive-compulsive disorderGenome-wide association studiesGenetic riskObsessive-compulsive disorder casesGenome-wide significant lociMedium spiny neuronsGenome-wide analysisMajor histocompatibility complexGene-based approachPsychiatric disordersSpiny neuronsTourette syndromeAnorexia nervosaSignificant lociEffector genesAssociation studiesAssociated with excitatory neuronsMultiple genesGenetic variantsAssociated with inflammatory bowel diseaseBody mass indexGenetic heritabilityDisordersExcitatory neuronsInflammatory bowel diseaseTranslational genomics of osteoarthritis in 1,962,069 individuals
Hatzikotoulas K, Southam L, Stefansdottir L, Boer C, McDonald M, Pett J, Park Y, Tuerlings M, Mulders R, Barysenka A, Arruda A, Tragante V, Rocco A, Bittner N, Chen S, Horn S, Srinivasasainagendra V, To K, Katsoula G, Kreitmaier P, Tenghe A, Gilly A, Arbeeva L, Chen L, de Pins A, Dochtermann D, Henkel C, Höijer J, Ito S, Lind P, Lukusa-Sawalena B, Minn A, Mola-Caminal M, Narita A, Nguyen C, Reimann E, Silberstein M, Skogholt A, Tiwari H, Yau M, Yue M, Zhao W, Zhou J, Alexiadis G, Banasik K, Brunak S, Campbell A, Cheung J, Dowsett J, Faquih T, Faul J, Fei L, Fenstad A, Funayama T, Gabrielsen M, Gocho C, Gromov K, Hansen T, Hudjashov G, Ingvarsson T, Johnson J, Jonsson H, Kakehi S, Karjalainen J, Kasbohm E, Lemmelä S, Lin K, Liu X, Loef M, Mangino M, McCartney D, Millwood I, Richman J, Roberts M, Ryan K, Samartzis D, Shivakumar M, Skou S, Sugimoto S, Suzuki K, Takuwa H, Teder-Laving M, Thomas L, Tomizuka K, Turman C, Weiss S, Wu T, Zengini E, Zhang Y, Ferreira M, Babis G, Baras A, Barker T, Carey D, Cheah K, Chen Z, Cheung J, Daly M, de Mutsert R, Eaton C, Erikstrup C, Furnes O, Golightly Y, Gudbjartsson D, Hailer N, Hayward C, Hochberg M, Homuth G, Huckins L, Hveem K, Ikegawa S, Ishijima M, Isomura M, Jones M, Kang J, Kardia S, Kloppenburg M, Kraft P, Kumahashi N, Kuwata S, Lee M, Lee P, Lerner R, Li L, Lietman S, Lotta L, Lupton M, Mägi R, Martin N, McAlindon T, Medland S, Michaëlsson K, Mitchell B, Mook-Kanamori D, Morris A, Nabika T, Nagami F, Nelson A, Ostrowski S, Palotie A, Pedersen O, Rosendaal F, Sakurai-Yageta M, Schmidt C, Sham P, Singh J, Smelser D, Smith J, Song Y, Sørensen E, Tamiya G, Tamura Y, Terao C, Thorleifsson G, Troelsen A, Tsezou A, Uchio Y, Uitterlinden A, Ullum H, Valdes A, van Heel D, Walters R, Weir D, Wilkinson J, Winsvold B, Yamamoto M, Zwart J, Stefansson K, Meulenbelt I, Teichmann S, van Meurs J, Styrkarsdottir U, Zeggini E. Translational genomics of osteoarthritis in 1,962,069 individuals. Nature 2025, 641: 1217-1224. PMID: 40205036, PMCID: PMC12119359, DOI: 10.1038/s41586-025-08771-z.Peer-Reviewed Original ResearchConceptsEffector genesGenome-wide association study meta-analysesTargets of approved drugsVariant associationsTranslational genomicsEpigenomic profilingStudy meta-analysesCircadian clockBiological processesLines of evidenceConditions associated with disabilityRepurposing opportunitiesSignal enrichmentGenesEffectorPathwayIndependent associationsMeta-analysesEffect sizeAccelerated translationEpigenomeTranscriptomeProteomicsDisease-modifying treatmentsOsteoarthritis
2024
Genomic insights into the comorbidity between type 2 diabetes and schizophrenia
Arruda A, Khandaker G, Morris A, Smith G, Huckins L, Zeggini E. Genomic insights into the comorbidity between type 2 diabetes and schizophrenia. Schizophrenia 2024, 10: 22. PMID: 38383672, PMCID: PMC10881980, DOI: 10.1038/s41537-024-00445-5.Peer-Reviewed Original ResearchBody mass indexType 2 diabetesType 2 diabetes riskEffect of body mass indexPutative effector genesN-methyl-D-aspartatePublic health challengeIncreased Body Mass IndexLipid-related pathwaysRisk-increasing effectMulti-omics dataMendelian randomizationPotential causal relationshipGene expression studiesDirection of effectMental healthDrug repurposing opportunitiesAssociation signalsGenomic lociGenomic insightsHealth challengesEffector genesGenetic liabilityMass indexExpression studies
2023
Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation
Meyer K, Lammers N, Bugaj L, Garcia H, Weiner O. Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation. Nature Communications 2023, 14: 6929. PMID: 37903793, PMCID: PMC10616176, DOI: 10.1038/s41467-023-42643-2.Peer-Reviewed Original ResearchConceptsCell fateYAP levelsControlling gene activityCell fate analysisPluripotency regulators Oct4Stem cell fateEffector genesTranscriptional regulationGene activationControl pluripotencyYAP activityNative dynamicsCellular differentiationRegulators Oct4Developmental decision-makingControl proliferationMolecular logicCell behaviorYAPFate analysisDynamic decoderOptogenetic controlOct4 expressionCellsFate
2022
Transcriptome of Epibiont Saccharibacteria Nanosynbacter lyticus Strain TM7x During the Establishment of Symbiosis
Hendrickson EL, Bor B, Kerns KA, Lamont EI, Chang Y, Liu J, Cen L, Schulte F, Hardt M, Shi W, He X, McLean JS. Transcriptome of Epibiont Saccharibacteria Nanosynbacter lyticus Strain TM7x During the Establishment of Symbiosis. Journal Of Bacteriology 2022, 204: e00112-22. PMID: 35975994, PMCID: PMC9487520, DOI: 10.1128/jb.00112-22.Peer-Reviewed Original ResearchConceptsCandidate Phyla RadiationEstablishment of symbiosisStable symbiosisStress-related genesGene expressionReduced genomePeptidoglycan biosynthesisHost bacteriaHuman microbiomeBiosynthesis gene expressionMonophyletic radiationCell sizeEffector genesPartitioning genesObligate parasitesUnique organismsBiosynthetic pathwayHigher gene expressionCell shapeTransporter geneCell wallObligate epibiontsLow expressionSymbiosisCell cycle
2018
The mammalian decidual cell evolved from a cellular stress response
Erkenbrack EM, Maziarz JD, Griffith OW, Liang C, Chavan AR, Nnamani MC, Wagner GP. The mammalian decidual cell evolved from a cellular stress response. PLOS Biology 2018, 16: e2005594. PMID: 30142145, PMCID: PMC6108454, DOI: 10.1371/journal.pbio.2005594.Peer-Reviewed Original ResearchConceptsCellular stress responseNovel cell typesStress responseEndometrial stromal fibroblastsCell typesCell type diversityDecidual stromal cellsCore regulatory genesOxidative stress responseDecidual cell typesEvolutionary noveltyPrecursor cell typesEffector genesRegulatory genesEutherian mammalsTranscription factorsOpossum Monodelphis domesticaOrganismal structureType diversityMolecular mechanismsAnimal speciesMonodelphis domesticaGenesStromal cellsSpecies
2017
HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus
Fusco D, Pratt H, Kandilas S, Cheon S, Lin W, Cronkite D, Basavappa M, Jeffrey K, Anselmo A, Sadreyev R, Yapp C, Shi X, O'Sullivan J, Gerszten R, Tomaru T, Yoshino S, Satoh T, Chung R. HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Frontiers In Microbiology 2017, 8: 240. PMID: 28265266, PMCID: PMC5316548, DOI: 10.3389/fmicb.2017.00240.Peer-Reviewed Original ResearchChromatin immunoprecipitation-sequencingFunctional genomic screensIFN antiviral responseNuclear receptor interaction proteinIFN signal transductionAntiviral effector genesDengue virusReceptor-interacting proteinHost response to viral infectionHost IFN signalingIFN-stimulated genesResponse to viral infectionGenomic screeningEffector genesInteracting proteinsInfectious dengue virusISRE elementKnockdown cellsAnti-dengue activityCo-ImmunoprecipitationGene productsSignal transductionTranscriptional programsAntiviral effect of IFNAntiviral effectors
2012
RBE controls microRNA164 expression to effect floral organogenesis
Huang T, López-Giráldez F, Townsend JP, Irish VF. RBE controls microRNA164 expression to effect floral organogenesis. Development 2012, 139: 2161-2169. PMID: 22573623, DOI: 10.1242/dev.075069.Peer-Reviewed Original ResearchConceptsCUP-SHAPED COTYLEDON1Zinc finger transcriptional repressorKey transcriptional regulatorMiR164 expressionPetal organogenesisArabidopsis flowersPetal developmentPlant developmentEffector genesTranscriptional regulatorsTranscriptional repressorFloral organogenesisGene productsDevelopmental eventsConcomitant regulationGenesOrgan boundariesOrganogenesisExpressionMiR164cCUC2RepressorBoundary specificationPromoterFlowers
2007
Transgenic LacZ under control of Hec-6st regulatory sequences recapitulates endogenous gene expression on high endothelial venules
Liao S, Bentley K, Lebrun M, Lesslauer W, Ruddle FH, Ruddle NH. Transgenic LacZ under control of Hec-6st regulatory sequences recapitulates endogenous gene expression on high endothelial venules. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 4577-4582. PMID: 17360566, PMCID: PMC1838643, DOI: 10.1073/pnas.0700334104.Peer-Reviewed Original ResearchConceptsDNA fragmentsTertiary lymphoid organsExpression of reporterEndogenous gene expressionBAC DNA fragmentsTissue-specific expressionBeta-galactosidase reporter geneHomologous recombination techniquesLymphoid organsLymphoid tissueEffector genesBAC clonesEndogenous genesRegulatory sequencesNasal-associated lymphoid tissueReporter geneGene expressionLacZ constructLTbetaR-Ig treatmentExon IIHEV-like vesselsGenesHigh endothelial venulesMolecular natureRecombination techniques
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply