2020
Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation
Su VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. Journal Of Biological Chemistry 2020, 295: 3269-3284. PMID: 32005669, PMCID: PMC7062153, DOI: 10.1074/jbc.ra119.009794.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic domain-associated protein-1N-terminal regionNuclear accumulationP21-activated kinase 4Ser-10Nuclear roleSerine phosphorylationNuclear localizationPhosphorylation-mimicking substitutionsNuclear localization signalCell-cell junctionsSer-25Localization signalKRIT1 functionThreonine residuesAdaptor proteinKRIT1 lossSubcellular localizationNeurovascular dysplasiaBlood vessel integrityVascular developmentKinase 4Cultured cellsPhosphorylationProtein 1
2014
Regulation of hepatic insulin receptor activity following injury
Jiang S, Gavrikova T, Messina J. Regulation of hepatic insulin receptor activity following injury. AJP Gastrointestinal And Liver Physiology 2014, 306: g886-g892. PMID: 24699331, PMCID: PMC4024725, DOI: 10.1152/ajpgi.00128.2013.Peer-Reviewed Original ResearchConceptsImpaired insulin receptorO-GlcNAc modificationO-GlcNAcIR tyrosine phosphorylationIR protein levelsInvolvement of JNKInhibition of JNKInsulin receptor activationIncreased serine phosphorylationTyrosine phosphorylationSer/Thr residuesPosttranslational modificationsSerine phosphorylationMembrane localizationIR activityInsulin receptorModel of insulin resistancePhosphorylationSer/ThrJNKTyrosine nitrationProtein levelsModels of injuryType 2 diabetesIR function
2009
Targeted Disruption of ROCK1 Causes Insulin Resistance in Vivo *
Lee D, Shi J, Jeoung N, Kim M, Zabolotny J, Lee S, White M, Wei L, Kim Y. Targeted Disruption of ROCK1 Causes Insulin Resistance in Vivo *. Journal Of Biological Chemistry 2009, 284: 11776-11780. PMID: 19276091, PMCID: PMC2673246, DOI: 10.1074/jbc.c900014200.Peer-Reviewed Original ResearchMeSH KeywordsAdiposityAnimalsDiabetes Mellitus, Type 2GlucoseGTPase-Activating ProteinsInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceMiceMice, KnockoutObesityPhosphatidylinositol 3-KinasesPhosphorylationProto-Oncogene Proteins c-aktrho-Associated KinasesRibosomal Protein S6 KinasesSignal TransductionConceptsIRS-1Skeletal muscleWhole-body glucose homeostasisInsulin resistanceBody glucose homeostasisCultured cell linesPhosphorylation of AktPhospho-tyrosinesGlucose homeostasisROCK1-deficient miceSerine phosphorylationNovel regulatorTyrosine phosphorylationS6KRho kinase isoformsInsulin sensitivityPhysiological roleGene ablationAbility of insulinInsulin receptorTargeted disruptionPhosphorylationNormal glucose homeostasisGlucose-induced insulin secretionROCK1
2008
Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle
Morino K, Neschen S, Bilz S, Sono S, Tsirigotis D, Reznick RM, Moore I, Nagai Y, Samuel V, Sebastian D, White M, Philbrick W, Shulman GI. Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle. Diabetes 2008, 57: 2644-2651. PMID: 18633112, PMCID: PMC2551673, DOI: 10.2337/db06-0454.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmino Acid SubstitutionAnimalsBlotting, WesternDietary FatsFemaleGlucose Clamp TechniqueGlucose Tolerance TestImmunoprecipitationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceMaleMiceMice, Inbred C57BLMice, TransgenicMuscle, SkeletalPhosphorylationSerineTriglyceridesConceptsSerine phosphorylationIRS-1IRS-1-associated phosphatidylinositolSkeletal muscleInsulin-stimulated IRS-1-associated phosphatidylinositolWild-type transgenic miceFat-induced insulin resistanceInsulin receptor substrateTransgenic miceReceptor substrateInsulin signalingAkt phosphorylationPhosphorylationCellular mechanismsCritical roleGlucose uptakeHigh-fat feedingInsulin resistanceMuscle glucose uptakeInsulin actionVivoSerInsulin-stimulated muscle glucose uptakeImportant rolePhosphatidylinositol
2007
Regulation of Caveolin‐2 Phosphorylation at Serines 23 and 36
Sowa G, Sessa W. Regulation of Caveolin‐2 Phosphorylation at Serines 23 and 36. The FASEB Journal 2007, 21: a1424-a1424. DOI: 10.1096/fasebj.21.6.a1424-b.Peer-Reviewed Original ResearchLipid rafts/caveolaeSerine 36 phosphorylationRafts/caveolaeSerine 23Cav-2Serine phosphorylationCav-1Phospho-specific antibodiesSubcellular fractionation dataSubcellular fractionation techniquesN-terminal serineEndothelial cellsCaveolar compartmentCaveolae assemblyLipid raftsSubcellular locationRegulated processSerine 36Caveolin-2Human endothelial cellsAdenoviral expressionIntracellular compartmentsPhosphorylationCaveolaeResidues 23
2006
Suppression of Insulin Receptor Substrate 1 (IRS-1) Promotes Mammary Tumor Metastasis
Ma Z, Gibson S, Byrne M, Zhang J, White M, Shaw L. Suppression of Insulin Receptor Substrate 1 (IRS-1) Promotes Mammary Tumor Metastasis. Molecular And Cellular Biology 2006, 26: 9338-9351. PMID: 17030605, PMCID: PMC1698550, DOI: 10.1128/mcb.01032-06.Peer-Reviewed Original ResearchConceptsIRS-1Insulin receptor substrate (IRS) proteinsInsulin receptor substrate-1Wild-type levelsMetastasis suppressor functionReceptor substrate-1Cell surface receptorsBreast cancerSubstrate proteinsCytoplasmic adaptorAkt/mTOR activityMammary tumor metastasisSignificant homologySerine phosphorylationDistinct functionsSubstrate-1Mammary tumorsIRS-2MTOR activitySuppressor functionMetastatic mammary tumorsTumor cellsIR-1Surface receptorsBreast cancer metastasisSemaphorin 3C regulates endothelial cell function by increasing integrin activity
Banu N, Teichman J, Dunlap‐Brown M, Villegas G, Tufro A, Banu N, Teichman J, Dunlap‐Brown M, Villegas G, Tufro A. Semaphorin 3C regulates endothelial cell function by increasing integrin activity. The FASEB Journal 2006, 20: 2150-2152. PMID: 16940438, DOI: 10.1096/fj.05-5698fje.Peer-Reviewed Original ResearchConceptsSema 3CEndothelial cell functionDirectional migrationStarvation-induced apoptosisCell functionCapillary-like network formationCardiovascular patterningClass 3 semaphorinsIntegrin phosphorylationSerine phosphorylationCollagen I gelsVascular morphogenesisEndothelial cellsMouse glomerular endothelial cellsIntegrin activityGuidance proteinsEndothelial cell proliferationIntegrin inhibitionCaspase-3Cell proliferationSitu markerTube formationSemaphorin 3CPhosphorylationGrowth factorPECAM-1 Affects GSK-3β-Mediated β-Catenin Phosphorylation and Degradation
Biswas P, Canosa S, Schoenfeld D, Schoenfeld J, Li P, Cheas LC, Zhang J, Cordova A, Sumpio B, Madri JA. PECAM-1 Affects GSK-3β-Mediated β-Catenin Phosphorylation and Degradation. American Journal Of Pathology 2006, 169: 314-324. PMID: 16816383, PMCID: PMC1698776, DOI: 10.2353/ajpath.2006.051112.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsbeta CateninBlotting, WesternCapillary PermeabilityCells, CulturedEndothelial CellsFluorescent Antibody TechniqueGlycogen Synthase Kinase 3Glycogen Synthase Kinase 3 betaHistamineHistamine AgentsHumansMiceModels, BiologicalPhosphatidylinositol 3-KinasesPhosphorylationPlatelet Endothelial Cell Adhesion Molecule-1Proto-Oncogene Proteins c-aktReceptors, HistamineSignal TransductionConceptsAdherens junctionsSerine phosphorylationSrc homology 2 domainBeta-catenin expression levelsAdherens junction componentsSerine phosphorylation levelEndothelial cellsΒ-catenin phosphorylationPECAM-1Cell biological responsesCytoplasmic domainSHP-2Proteosomal degradationGSK-3betaDynamic regulatorJunction componentsPhosphorylation levelsPhosphorylationEndothelial cell adhesion molecule-1Expression levelsGSK-3βBiological responsesEndothelial barrier permeabilityMice exhibitCell adhesion molecule-1
2005
Identification of MEKK2/3 serine phosphorylation site targeted by the Toll‐like receptor and stress pathways
Zhang D, Facchinetti V, Wang X, Huang Q, Qin J, Su B. Identification of MEKK2/3 serine phosphorylation site targeted by the Toll‐like receptor and stress pathways. The EMBO Journal 2005, 25: 97-107. PMID: 16362041, PMCID: PMC1356356, DOI: 10.1038/sj.emboj.7600913.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibodies, Phospho-SpecificCytokinesEnzyme ActivationInterleukin-6LigandsLipopolysaccharidesMAP Kinase Kinase Kinase 2MAP Kinase Kinase Kinase 3Molecular Sequence DataMutationPhosphoamino AcidsPhosphorylationProtein Kinase InhibitorsSerineTNF Receptor-Associated Factor 6Toll-Like Receptor 4Toll-Like ReceptorsConceptsPhosphorylation sitesSerine phosphorylationMitogen-activated protein kinase kinase kinase (MAP3K) familyMolecular mechanismsProtein kinase kinase kinase familyToll-like receptorsStress pathwaysRegulatory phosphorylation sitesSerine phosphorylation sitesCellular stress responseCellular stress pathwaysNovel molecular mechanismDifferent cellular responsesKey adaptor moleculeMEKK3 phosphorylationRegulatory serineKinase familyAdaptor moleculeStress responseCellular responsesK activationMAPK agonistsPhosphorylationMEKK2PathwayThe role of STAT-3 in the mediation of smooth muscle cell response to cyclic strain
Kakisis JD, Pradhan S, Cordova A, Liapis CD, Sumpio BE. The role of STAT-3 in the mediation of smooth muscle cell response to cyclic strain. The International Journal Of Biochemistry & Cell Biology 2005, 37: 1396-1406. PMID: 15833272, DOI: 10.1016/j.biocel.2005.01.009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCell ProliferationCells, CulturedDNA-Binding ProteinsMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Myocytes, Smooth MusclePhosphorylationPyrazolesPyrimidinesRatsSerineSignal Transductionsrc-Family KinasesSTAT3 Transcription FactorStress, MechanicalTrans-ActivatorsTyrosineConceptsSerine phosphorylationTyrosine phosphorylationSmooth muscle cellsSTAT-3Vascular smooth muscle cellsSTAT-3 tyrosine phosphorylationSpecific inhibitorVascular cell morphologyExtracellular signal-regulated kinase 1/2Extracellular mechanical signalsSignal-regulated kinase 1/2Basal serine phosphorylationInhibition of SrcA7r5 smooth muscle cellsNegative feedback loopInhibition of ERK1/2Cells sensePhosphospecific antibodiesPhosphatidylinositol 3Signal transducerTranscription 3Kinase 2Kinase 1/2Smooth muscle cell responseBasal phosphorylation
2004
Arginine Methylation of Runx1 Regulates Its Biological and Transcriptional Activities.
Zhao X, Parkanani A, Zhang J, Dunne R, Xiao A, Allis C, Nimer S. Arginine Methylation of Runx1 Regulates Its Biological and Transcriptional Activities. Blood 2004, 104: 2041. DOI: 10.1182/blood.v104.11.2041.2041.Peer-Reviewed Original ResearchArginine methylation sitesProtein arginine methyltransferasesArginine methylationRunt domainMethylation sitesTranscriptional repression complexAbility of RUNX1Co-immunoprecipitation assaysChromatin immunoprecipitation assaysSite-specific mutagenesisCell proliferation signalsCarboxy-terminal regionLuciferase gene reporterRepression complexDefinitive hematopoiesisArginine methyltransferasesTranscriptional activatingGATA-1Repressor proteinLysine acetylationMass spectrometry analysisTranscription factorsImmunoprecipitation assaysSerine phosphorylationGene transcriptionInsulin receptor substrate proteins and diabetes
Lee Y, White M. Insulin receptor substrate proteins and diabetes. Archives Of Pharmacal Research 2004, 27: 361-370. PMID: 15180298, DOI: 10.1007/bf02980074.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate (IRS) proteinsSubstrate proteinsPancreatic β-cell growthInsulin/IGFIntracellular signaling cascadesReceptor tyrosine kinasesΒ-cell growthCell surface receptorsIRS proteinsGrowth factor actionProtein signalingSerine phosphorylationSignaling cascadesInsulin resistanceTyrosine kinaseInsulin-like growth factor actionIrs2 branchCell growthSurface receptorsFactor actionPeripheral insulin responsePeripheral insulin resistanceIRS2ProteinImportant mechanism
2002
IRS proteins and the common path to diabetes
White M. IRS proteins and the common path to diabetes. AJP Endocrinology And Metabolism 2002, 283: e413-e422. PMID: 12169433, DOI: 10.1152/ajpendo.00514.2001.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate (IRS) proteinsIRS protein functionsProteosome-mediated degradationCommon regulatory pathwayCommon molecular mechanismIntracellular signaling cascadesInsulin/IGF receptorIRS-2 signalingCell surface receptorsIRS proteinsSubstrate proteinsPancreatic beta-cell growthProtein functionGrowth factor actionNutrient sensingSerine phosphorylationRegulatory pathwaysSignaling cascadesIGF-signaling pathwayInsulin resistanceMolecular mechanismsIRS-2Insulin-like growth factor actionIRS-1Broader roleTranscription Factor Sp1 Phosphorylation Induced by Shear Stress Inhibits Membrane Type 1-Matrix Metalloproteinase Expression in Endothelium*
Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, Madri JA, Sumpio BE. Transcription Factor Sp1 Phosphorylation Induced by Shear Stress Inhibits Membrane Type 1-Matrix Metalloproteinase Expression in Endothelium*. Journal Of Biological Chemistry 2002, 277: 34808-34814. PMID: 12093818, DOI: 10.1074/jbc.m205417200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCells, CulturedDNADNA-Binding ProteinsEarly Growth Response Protein 1Electrophoretic Mobility Shift AssayEndothelium, VascularImmediate-Early ProteinsMatrix Metalloproteinases, Membrane-AssociatedMetalloendopeptidasesNogalamycinPhosphorylationPromoter Regions, GeneticRatsRats, Sprague-DawleyRNA, MessengerSp1 Transcription FactorStress, PhysiologicalTranscription FactorsConceptsMT1-MMP expressionEgr-1MRNA transcriptionMT1-MMP promoterPost-translational modificationsCalf intestinal phosphataseDistinct environmental stimuliTranscription factor expressionSp1 phosphorylationEgr-1 expressionSp1 DNAEndothelial cell migrationSerine phosphorylationPromoter sitesSp1Cell migrationEnvironmental stimuliMatrix remodelingIntestinal phosphataseProtein levelsTranscriptionTime-dependent fashionPhosphorylationMechanical forcesExpression
2001
Phosphorylation of the Saccharomyces cerevisiae La protein does not appear to be required for its functions in tRNA maturation and nascent RNA stabilization.
Long K, Cedervall T, Walch-Solimena C, Noe D, Huddleston M, Annan R, Wolin S. Phosphorylation of the Saccharomyces cerevisiae La protein does not appear to be required for its functions in tRNA maturation and nascent RNA stabilization. RNA 2001, 7: 1589-602. PMID: 11720288, PMCID: PMC1370201.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAutoantigensBinding SitesCell NucleolusCell NucleusFungal ProteinsMolecular Sequence DataPeptide MappingPhosphorylationProtein IsoformsRibonucleoproteinsRibonucleoproteins, Small NuclearRNARNA StabilityRNA, FungalRNA, TransferRNA-Binding ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsLa proteinAbundant nuclear phosphoproteinRNA polymerase III transcriptsS. cerevisiae proteinTwo-dimensional gel electrophoresisRole of phosphorylationPolymerase III transcriptsCerevisiae proteinsNascent RNANascent transcriptsS. pombeSchizosaccharomyces pombeLhp1pPhosphorylation sitesYeast SaccharomycesProtein functionMutant versionSubcellular locationFirst proteinHuman proteinsNuclear phosphoproteinExonucleolytic degradationSerine phosphorylationPhosphorylation statusRNA stabilizationPhosphorylation of Ser307 in Insulin Receptor Substrate-1 Blocks Interactions with the Insulin Receptor and Inhibits Insulin Action*
Aguirre V, Werner E, Giraud J, Lee Y, Shoelson S, White M. Phosphorylation of Ser307 in Insulin Receptor Substrate-1 Blocks Interactions with the Insulin Receptor and Inhibits Insulin Action*. Journal Of Biological Chemistry 2001, 277: 1531-1537. PMID: 11606564, DOI: 10.1074/jbc.m101521200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinAnti-Bacterial AgentsCell LineHumansInsulinInsulin Receptor Substrate ProteinsMitogen-Activated Protein Kinase 8Mitogen-Activated Protein KinasesPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationRatsReceptor, InsulinRecombinant Fusion ProteinsSignal TransductionTumor Necrosis Factor-alphaTwo-Hybrid System TechniquesConceptsInsulin receptor substrate-1Phosphotyrosine-binding (PTB) domainInsulin receptorPotential phosphorylation sitesPhosphorylation of Ser307Stress-activated kinasesInsulin-stimulated kinasesReceptor substrate-1Insulin signal transductionPTB domainMAPK cascadePhosphorylation sitesMyeloid progenitor cellsSignal transductionSerine residuesCatalytic domainSerine phosphorylationDomain functionsSubstrate-1Insulin stimulationCell backgroundPhosphorylationProgenitor cellsGeneral mechanismMechanism of inhibition
2000
The c-Jun NH2-terminal Kinase Promotes Insulin Resistance during Association with Insulin Receptor Substrate-1 and Phosphorylation of Ser307 *
Davis R, Aguirre V, Uchida T, Yenush L, White M. The c-Jun NH2-terminal Kinase Promotes Insulin Resistance during Association with Insulin Receptor Substrate-1 and Phosphorylation of Ser307 *. Journal Of Biological Chemistry 2000, 275: 9047-9054. PMID: 10722755, DOI: 10.1074/jbc.275.12.9047.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAnisomycinCHO CellsCricetinaeHumansInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceJNK Mitogen-Activated Protein KinasesMiceMitogen-Activated Protein KinasesMolecular Sequence DataPhosphoproteinsPhosphorylationProtein BindingReceptor, InsulinRecombinant ProteinsSerineSignal TransductionTumor Necrosis Factor-alphaConceptsInsulin-stimulated tyrosine phosphorylationIRS-1Serine 307Tyrosine phosphorylationInsulin receptor substrate-1IRS-1 functionSignal transduction cascadePhosphorylation of Ser307Receptor substrate-1Chinese hamster ovary cellsIRS proteinsActivity of JNKJNK associatesPhosphorylation sitesHamster ovary cellsTransduction cascadeSerine phosphorylationTerminal kinaseSubstrate-1PhosphorylationStrong activatorPromotes Insulin ResistanceJNK phosphorylationOvary cellsJNK
1999
Endothelin-1 modulates insulin signaling through phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells.
Jiang Z, Zhou Q, Chatterjee A, Feener E, Myers M, White M, King G. Endothelin-1 modulates insulin signaling through phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells. Diabetes 1999, 48: 1120-1130. PMID: 10331419, DOI: 10.2337/diabetes.48.5.1120.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEndothelin Receptor AntagonistsEndothelin-1Enzyme InhibitorsGTP-Binding ProteinsHumansInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsMaleMuscle, Smooth, VascularPeptides, CyclicPertussis ToxinPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphoproteinsPhosphoserineProtein Kinase CRatsRats, ZuckerSignal TransductionTetradecanoylphorbol AcetateVirulence Factors, BordetellaConceptsInsulin-stimulated phosphatidylinositolProtein kinase CIRS-2P85 subunitSerine phosphorylationSmooth muscle cellsInsulin receptor beta subunitInsulin-induced phosphatidylinositolInsulin receptor substrateReceptor beta subunitMuscle cellsTreatment of cellsArterial smooth muscle cellsReceptor substratePretreatment of cellsVascular smooth muscle cellsBeta subunitKinase CPhosphatidylinositolIndependent pathwaysSpecific inhibitorET-1SubunitsPhosphorylationPathway
1997
Activation of the phosphatidylinositol 3-kinase serine kinase by IFN-alpha.
Uddin S, Fish E, Sher D, Gardziola C, White M, Platanias L. Activation of the phosphatidylinositol 3-kinase serine kinase by IFN-alpha. The Journal Of Immunology 1997, 158: 2390-7. PMID: 9036989, DOI: 10.4049/jimmunol.158.5.2390.Peer-Reviewed Original ResearchConceptsSerine kinaseTreatment of cellsIRS-1Kinase assaysSerine kinase activityDual-specificity enzymeP85 regulatory subunitReceptor-generated signalsIRS-1 proteinJak-1 kinasesIFN-alpha-induced activationProtein associatesP85 subunitPhosphoaminoacid analysisRegulatory subunitSerine residuesSerine phosphorylationTyrosine phosphorylationTyk-2STAT-2MAP kinaseKinase activityPretreatment of cellsInhibitor wortmanninPhosphatidylinositol
1996
Tumor Necrosis Factor (TNF)-α Inhibits Insulin Signaling through Stimulation of the p55 TNF Receptor and Activation of Sphingomyelinase*
Peraldi P, Hotamisligil G, Buurman W, White M, Spiegelman B. Tumor Necrosis Factor (TNF)-α Inhibits Insulin Signaling through Stimulation of the p55 TNF Receptor and Activation of Sphingomyelinase*. Journal Of Biological Chemistry 1996, 271: 13018-13022. PMID: 8662983, DOI: 10.1074/jbc.271.22.13018.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAdipocytesAnimalsAntigens, CDCell LineCeramidesEnzyme ActivationHumansInsulinInsulin Receptor Substrate ProteinsMicePhosphoproteinsPhosphorylationReceptor, InsulinReceptors, Tumor Necrosis FactorReceptors, Tumor Necrosis Factor, Type ISignal TransductionSphingomyelin PhosphodiesteraseTumor Necrosis Factor-alphaTyrosineConceptsInsulin receptor substrate-1Myeloid 32D cellsInsulin receptorP55 TNF receptorP75 TNF receptorTyrosine phosphorylationInhibits InsulinIRS-2Insulin-dependent tyrosine phosphorylationTNF receptorIRS-1 tyrosine phosphorylationTNF-alphaIR tyrosine kinaseReceptor substrate-1Tyrosine kinase activityNecrosis factorActivation of sphingomyelinaseSerine phosphorylationBiological functionsKinase activitySubstrate-1Tyrosine kinaseExogenous sphingomyelinaseMurine TNF-alphaTumor necrosis factor
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply