2024
TRF2–RAP1 represses RAD51-dependent homology-directed telomere repair by promoting BLM-mediated D-loop unwinding and inhibiting BLM–DNA2-dependent 5′-end resection
Liang F, Rai R, Sodeinde T, Chang S. TRF2–RAP1 represses RAD51-dependent homology-directed telomere repair by promoting BLM-mediated D-loop unwinding and inhibiting BLM–DNA2-dependent 5′-end resection. Nucleic Acids Research 2024, 52: 9695-9709. PMID: 39082275, PMCID: PMC11381343, DOI: 10.1093/nar/gkae642.Peer-Reviewed Original ResearchHomology-directed repairTelomeric D-loopsD-loopChromosome fusionsD-loop formationSingle-stranded telomeric overhangsHomology searchTelomere clusteringTRFH domainPurified proteinBasic domainBlm mutantsProtect telomeresGenomic instabilityTelomeric overhangEnd resectionTRF2Molecular mechanismsTelomereTelomere lossMolecular pathwaysTelomere repairGenomeMutantsRap1
2023
Telomeres cooperate with the nuclear envelope to maintain genome stability
Rai R, Sodeinde T, Boston A, Chang S. Telomeres cooperate with the nuclear envelope to maintain genome stability. BioEssays 2023, 46: e2300184. PMID: 38047499, DOI: 10.1002/bies.202300184.Peer-Reviewed Original ResearchNuclear envelopeGenome stabilityNuclear envelope ruptureKu70/Ku80Homology-directed recombinationMammalian telomeresChromosome stabilityNuclear laminsShelterin componentsProtein TRF2Envelope ruptureRepair proteinsTelomeresRap1Recent findingsProteinFunction resultsRecombinationDNA sensingForm structuresLaminsTRF2Ku80DNAHomeostasisHomology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2B and RAP1
Rai R, Biju K, Sun W, Sodeinde T, Al-Hiyasat A, Morgan J, Ye X, Li X, Chen Y, Chang S. Homology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2B and RAP1. Nature Communications 2023, 14: 2144. PMID: 37059728, PMCID: PMC10104862, DOI: 10.1038/s41467-023-37761-w.Peer-Reviewed Original ResearchConceptsDouble-strand breaksNuclear envelopeDistinct DNA repair mechanismsNuclear envelope ruptureKu70/Ku80DNA repair mechanismsDNA-RNA hybridsBRCT domainGenome stabilityPhosphomimetic mutantTelomere formationGenotoxic stressEnvelope ruptureDysfunctional telomeresBasic domainRap1Aberrant laminTelomeresRepair mechanismsLaminsTRF2HomologyProteinShelterinADAR1p110
2022
DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum
Kuroiwa M, Shuto T, Nagai T, Amano M, Kaibuchi K, Nairn A, Nishi A. DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum. Neurochemistry International 2022, 162: 105438. PMID: 36351540, DOI: 10.1016/j.neuint.2022.105438.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Phosphatase 1DARPP-32Receptor-induced phosphorylationPKA-dependent phosphorylationPKA/DARPPPP1 inhibitorPP1 substratesPP1 inhibitionPKA sitesRap1 activationOkadaic acidRASGRP2Novel componentRap1GAPPhosphorylationDARPP-32 knockout micePhospho-Thr34 DARPP-32Receptor activationPKAKnockout miceReceptor stimulationPP2A.Ser499Rap1
2020
Signaling Diversity Enabled by Rap1 and cAMP/PKA‐Regulated Plasma Membrane ERK with Distinct Temporal Dynamics
Keyes J, Ganesan A, Molinar-Inglis O, Hamidzadeh A, Ling M, Trejo J, Levchenko A, Zhang J. Signaling Diversity Enabled by Rap1 and cAMP/PKA‐Regulated Plasma Membrane ERK with Distinct Temporal Dynamics. The FASEB Journal 2020, 34: 1-1. DOI: 10.1096/fasebj.2020.34.s1.00680.Peer-Reviewed Original ResearchERK activityTemporal regulationPrecise temporal regulationMembrane protrusion dynamicsSequence-specific motifsSpecific subcellular locationsControl cell morphologyDifferent subcellular compartmentsMultiple cellular processesERK enzymatic activityCAMP/PKAERK biosensorEGF inducesKinase cascadeCellular processesExtracellular signalsSubcellular compartmentsSubcellular locationProtrusion dynamicsSubcellular regionsPlasma membraneSpecific motifsEnzymatic activityCell morphologyRap1
2018
Intrinsic cooperativity potentiates parallel cis-regulatory evolution
Sorrells T, Johnson A, Howard C, Britton C, Fowler K, Feigerle J, Weil P, Johnson A. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. ELife 2018, 7: e37563. PMID: 30198843, PMCID: PMC6173580, DOI: 10.7554/elife.37563.Peer-Reviewed Original ResearchConceptsRegulatory sequencesGeneral transcription factor TFIIDCis-regulatory evolutionRibosomal protein genesTranscription factor TFIIDCommon interaction partnersFungal lineagesAncestral regulatorFactor TFIIDIndependent lineagesEvolutionary eventsGenomic scaleTranscription regulatorsTranscriptional activationParallel evolutionProtein geneRegulatory proteinsSecond regulatorInteraction partnersRandom mutationsFunctional sitesIntrinsic cooperativityMcm1Rap1RegulatorRap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment
Bonello TT, Perez-Vale KZ, Sumigray KD, Peifer M. Rap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment. Development 2018, 145: dev157941. PMID: 29361565, PMCID: PMC5825837, DOI: 10.1242/dev.157941.Peer-Reviewed Original ResearchMeSH KeywordsAdherens JunctionsAnimalsAnimals, Genetically ModifiedCell PolarityDrosophila melanogasterDrosophila ProteinsFemaleGastrulationGene Knockdown TechniquesGuanine Nucleotide Exchange FactorsIntracellular Signaling Peptides and ProteinsMaleModels, BiologicalProtein Interaction Domains and MotifsProtein TransportRNA InterferenceShelterin ComplexTelomere-Binding ProteinsConceptsApical-basal polarityPolarity establishmentMembrane localizationEpithelial apical-basal polarityAdherens junction positioningBazooka/Par3Adherens junction assemblyMost animal tissuesSmall GTPase Rap1Polarity initiationApical retentionNascent junctionsRA domainJunction assemblyAdherens junctionsTricellular junctionsPolarized cellsGTPase Rap1Macromolecular assembliesApical activationRap1Spatial organizationAnimal tissuesMultiple mechanismsEstablishment model
2013
Rap1 and Canoe/afadin are essential for establishment of apical–basal polarity in the Drosophila embryo
Choi W, Harris NJ, Sumigray KD, Peifer M. Rap1 and Canoe/afadin are essential for establishment of apical–basal polarity in the Drosophila embryo. Molecular Biology Of The Cell 2013, 24: 945-963. PMID: 23363604, PMCID: PMC3608504, DOI: 10.1091/mbc.e12-10-0736.Peer-Reviewed Original ResearchMeSH KeywordsAdherens JunctionsAnimalsCell LineCell PolarityCell ShapeCytoskeletonDrosophila melanogasterDrosophila ProteinsEmbryo, NonmammalianGreen Fluorescent ProteinsIntracellular Signaling Peptides and ProteinsMicroscopy, ConfocalModels, BiologicalMutationProtein Kinase Crap1 GTP-Binding ProteinsRNA InterferenceConceptsAtypical protein kinase CCanoe/AfadinPolarity establishmentPolarity cuesDrosophila embryosAdherens junctionsApical-basal cell polarityBazooka/Par3Apical-basal polarityAbsence of Rap1Columnar cell shapeSmall GTPase Rap1Protein kinase CCell polarityBazookaGTPase Rap1Protein networkRap1Cell shapeLinear pathwaySuperb modelKinase COrgan architectureAfadinCytoskeleton
2011
A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms
Chen Y, Rai R, Zhou ZR, Kanoh J, Ribeyre C, Yang Y, Zheng H, Damay P, Wang F, Tsujii H, Hiraoka Y, Shore D, Hu HY, Chang S, Lei M. A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nature Structural & Molecular Biology 2011, 18: 213-221. PMID: 21217703, PMCID: PMC3688267, DOI: 10.1038/nsmb.1974.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsCells, CulturedCrystallography, X-RayFungal ProteinsHeLa CellsHumansModels, MolecularMolecular Sequence DataMutationNuclear Magnetic Resonance, BiomolecularProtein BindingProtein Interaction Domains and MotifsSaccharomycetalesSchizosaccharomycesShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 2ConceptsRap1 C-terminusDifferent interacting partnersProtein Rap1Fission yeastTelomere protectionInteracting partnerTranscriptional silencingDifferent organismsC-terminusFunctional analysisInteraction moduleYeastRap1Different functionsOrganismsTaz1Sir3TRF2MammalianTelomeresSilencingMammalsMotifCrystal structureRegulation
2010
Telomere-independent Rap1 is an IKK adaptor and regulates NF-κB-dependent gene expression
Teo H, Ghosh S, Luesch H, Ghosh A, Wong ET, Malik N, Orth A, de Jesus P, Perry AS, Oliver JD, Tran NL, Speiser LJ, Wong M, Saez E, Schultz P, Chanda SK, Verma IM, Tergaonkar V. Telomere-independent Rap1 is an IKK adaptor and regulates NF-κB-dependent gene expression. Nature Cell Biology 2010, 12: 758-767. PMID: 20622870, DOI: 10.1038/ncb2080.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBlotting, WesternCell LineCell Line, TumorChromatin ImmunoprecipitationChromatography, GelHeLa CellsHumansI-kappa B KinaseImmunohistochemistryImmunoprecipitationKaplan-Meier EstimateMiceNF-kappa BPhosphorylationPolymerase Chain ReactionProtein BindingRNA, Small InterferingShelterin ComplexTelomere-Binding ProteinsTissue Array Analysis
2009
Rap1 maintains adhesion between cells to affect Egfr signaling and planar cell polarity in Drosophila
O'Keefe D, Gonzalez-Niño E, Burnett M, Dylla L, Lambeth S, Licon E, Amesoli C, Edgar B, Curtiss J. Rap1 maintains adhesion between cells to affect Egfr signaling and planar cell polarity in Drosophila. Developmental Biology 2009, 333: 143-160. PMID: 19576205, PMCID: PMC2730837, DOI: 10.1016/j.ydbio.2009.06.032.Peer-Reviewed Original ResearchConceptsPlanar cell polarityCell polarityMutant tissueEGFR SignalingCell fate specificationEpithelial cell shapeOmmatidial rotationMutant cellsGTPase Rap1Cell motilityFate specificationSignal transductionRap1Cell shapeCell signalingJunctional localizationRap1 inactivationWing veinsCell adhesionDevelopmental processesHair alignmentCell typesFunctional readoutTissue differentiationDevelopmental context
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply