2024
Engineered mRNA–ribosome fusions for facile biosynthesis of selenoproteins
Thaenert A, Sevostyanova A, Chung C, Vargas-Rodriguez O, Melnikov S, Söll D. Engineered mRNA–ribosome fusions for facile biosynthesis of selenoproteins. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2321700121. PMID: 38442159, PMCID: PMC10945757, DOI: 10.1073/pnas.2321700121.Peer-Reviewed Original ResearchMeSH KeywordsCodon, TerminatorEscherichia coliMagnoliopsidaRibosomesRNA, MessengerRNA, Ribosomal, 16SSelenocysteineSelenoproteinsConceptsSelenocysteine insertion sequenceRibosomal RNARibosome engineeringMessenger RNARegulatory RNA elementsMachinery of protein synthesisInsertion of SecSec-containing proteinsSite-specific insertionBiosynthesis of selenoproteinsNatural messenger RNALive bacterial cellsRNA elementsUAG codonInsertion sequenceRibosome structureUGA codonSec codonInsert SecStop codonSynthetic biologyDesigning proteinsRibosomePolypeptide chainBacterial cells
2023
Creating Selenocysteine-Specific Reporters Using Inteins
Chung C, Söll D, Krahn N. Creating Selenocysteine-Specific Reporters Using Inteins. Methods In Molecular Biology 2023, 2676: 69-86. PMID: 37277625, DOI: 10.1007/978-1-0716-3251-2_5.Peer-Reviewed Original Research
2022
Uncovering translation roadblocks during the development of a synthetic tRNA
Prabhakar A, Krahn N, Zhang J, Vargas-Rodriguez O, Krupkin M, Fu Z, Acosta-Reyes FJ, Ge X, Choi J, Crnković A, Ehrenberg M, Puglisi EV, Söll D, Puglisi J. Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Research 2022, 50: 10201-10211. PMID: 35882385, PMCID: PMC9561287, DOI: 10.1093/nar/gkac576.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsAmino Acyl-tRNA SynthetasesNucleotidesProtein BiosynthesisRibosomesRNA, TransferSelenocysteineConceptsOrthogonal translation systemGenetic code expansionCode expansionTertiary interactionsNon-canonical amino acidsAminoacyl-tRNA substratesDomains of lifeAminoacyl-tRNA synthetaseTranslation systemSingle nucleotide mutationsSingle-molecule fluorescenceDistinct tRNAsNon-canonical structuresSelenocysteine insertionRibosomal translationTRNARibosomesSynthetic tRNANucleotide mutationsAmino acidsSame organismP siteOrganismsTranslocationTranslationThe expression of essential selenoproteins during development requires SECIS-binding protein 2–like
Kiledjian N, Shah R, Vetick M, Copeland P. The expression of essential selenoproteins during development requires SECIS-binding protein 2–like. Life Science Alliance 2022, 5: e202101291. PMID: 35210313, PMCID: PMC8881744, DOI: 10.26508/lsa.202101291.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAnimalsRNA-Binding ProteinsSelenocysteineSelenoproteinsZebrafishConceptsSECIS-binding protein 2Sec insertion sequenceSelenoprotein synthesisProtein 2Amino acid selenocysteineFrame UGA codonDays post fertilizationEssential selenoproteinsCRISPR mutationsSec incorporationUGA codonSelenoprotein mRNAsPost fertilizationRNA structureSe labelingSelenoproteinsFull complementInsertion sequenceEmbryosCodonGenesSBP2Oxidative stressDietary requirementsRelative roles
2019
Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs
Baclaocos J, Santesmasses D, Mariotti M, Bierła K, Vetick MB, Lynch S, McAllen R, Mackrill JJ, Loughran G, Guigó R, Szpunar J, Copeland PR, Gladyshev VN, Atkins JF. Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs. Journal Of Molecular Biology 2019, 431: 4381-4407. PMID: 31442478, PMCID: PMC6885538, DOI: 10.1016/j.jmb.2019.08.007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiological EvolutionCodon, TerminatorMolluscaProtein BiosynthesisSelenocysteineSelenoprotein PConceptsSELENOP geneEvolution of selenoproteinsPacific oyster Magallana gigasC-terminal domainN-terminal domainOyster Magallana gigasGene evolutionRibosome profilingMammalian counterpartsRibosome progressionMagallana gigasCertain insectsDynamic evolutionary processInitiation codonSECIS elementsGenetic elementsRNA structureCommon spiderEvolutionary processesSelenoprotein expressionSELENOP mRNAUGAAquatic organismsBivalve molluscsSelenocysteine
2018
Processive incorporation of multiple selenocysteine residues is driven by a novel feature of the selenocysteine insertion sequence
Shetty SP, Sturts R, Vetick M, Copeland PR. Processive incorporation of multiple selenocysteine residues is driven by a novel feature of the selenocysteine insertion sequence. Journal Of Biological Chemistry 2018, 293: 19377-19386. PMID: 30323062, PMCID: PMC6302164, DOI: 10.1074/jbc.ra118.005211.Peer-Reviewed Original Research
2010
Mutations Disrupting Selenocysteine Formation Cause Progressive Cerebello-Cerebral Atrophy
Agamy O, Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R, Hoffmann C, Leshinsky-Silver E, Flusser H, Sivan S, Söll D, Lerman-Sagie T, Birk OS. Mutations Disrupting Selenocysteine Formation Cause Progressive Cerebello-Cerebral Atrophy. American Journal Of Human Genetics 2010, 87: 538-544. PMID: 20920667, PMCID: PMC2948803, DOI: 10.1016/j.ajhg.2010.09.007.Peer-Reviewed Original Research
2009
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura S, Sherrer RL, Steitz TA, Söll D, Simonović M. The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation. Science 2009, 325: 321-325. PMID: 19608919, PMCID: PMC2857584, DOI: 10.1126/science.1173755.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBiocatalysisCatalytic DomainCrystallography, X-RayHumansHydrogen BondingModels, MolecularMolecular Sequence DataNucleic Acid ConformationPhosphatesPhosphoserineProtein ConformationProtein MultimerizationProtein Structure, SecondaryRNA, Transfer, Amino Acid-SpecificRNA, Transfer, Amino AcylSelenocysteineConceptsTransfer RNASelenocysteine formationSelenocysteinyl-tRNA synthaseCognate transfer RNAEnzyme active siteTRNA bindingActive siteConformational changesEnzyme assaysAmino acidsFree phosphoserinePhosphoserineSepSecSFinal stepSelenocysteineBiosynthesisComplexesRNAMechanismBindsCrystal structureSynthaseBindingFormationAssays
1999
Archaeal Aminoacyl-tRNA Synthesis: Diversity Replaces Dogma
Tumbula D, Vothknecht U, Kim H, Ibba M, Min B, Li T, Pelaschier J, Stathopoulos C, Becker H, Söll D. Archaeal Aminoacyl-tRNA Synthesis: Diversity Replaces Dogma. Genetics 1999, 152: 1269-1276. PMID: 10430557, PMCID: PMC1460689, DOI: 10.1093/genetics/152.4.1269.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisGene transfer eventsPhenylalanyl-tRNA synthetasesLysyl-tRNA synthetaseTransamidation pathwayExtant organismsMethanococcus jannaschiiAsparaginyl-tRNAProtein biosynthesisGenetic codeGene expressionGenome sequencingAminoacyl-tRNAArchaeaMethanobacterium thermoautotrophicumMolecular biologyUnexpected levelNovel pathwayTransfer eventsFaithful translationPathwayJannaschiiSynthetasesBiosynthesisOrganisms
1989
The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, Genetic
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply