2025
A common mechanism of singular gene choice is revealed by broadly expressed odorant receptor transgenes within the olfactory epithelium
Makhlouf M, D'Hulst C, Omura M, Rosa A, Mina R, Bernal-Garcia S, Lempert E, Saraiva L, Feinstein P. A common mechanism of singular gene choice is revealed by broadly expressed odorant receptor transgenes within the olfactory epithelium. Cell Reports 2025, 44: 115955. PMID: 40663455, DOI: 10.1016/j.celrep.2025.115955.Peer-Reviewed Original ResearchConceptsSingular gene choiceOlfactory sensory neuronsTrace amine-associated receptorsGene choiceOR-expressing OSNsClass IIClass ICell typesOdorant receptorsOR transgeneReduction of expressionOlfactory epitheliumOlfactory bulbSensory neuronsOR enhancersTransgene expressionGlomeruliMonoallelic fashionReceptorsGene expressionTransgeneExpressionCellsEpitheliumMice
2023
AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells
Ye L, Lam S, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nature Biomedical Engineering 2023, 8: 132-148. PMID: 37430157, PMCID: PMC11320892, DOI: 10.1038/s41551-023-01058-6.Peer-Reviewed Original ResearchGene delivery systemsAdeno-associated virusTransgene expressionHigh transgene expressionSleeping Beauty (SB) transposonTransgene deliverySleeping Beauty transposasePluripotent stem cellsSB transposonLentiviral vectorsGenomic integrationEngineering cellsBeauty transposonMinicircle DNATransposon DNABeauty transposaseCell viabilityPermanent integrationStem cellsElectroporation of plasmidsTransgeneChimeric antigen receptorDeliveryElectroporationEngineering
2018
A combinatorial approach for robust transgene delivery and targeted expression in mammary gland for generating biotherapeutics in milk, bypassing germline gene integration
Ganguli N, Ganguli N, Chandra S, Choubey M, Sarkar D, Majumdar S. A combinatorial approach for robust transgene delivery and targeted expression in mammary gland for generating biotherapeutics in milk, bypassing germline gene integration. Applied Microbiology And Biotechnology 2018, 102: 6221-6234. PMID: 29855689, DOI: 10.1007/s00253-018-9094-2.Peer-Reviewed Original ResearchConceptsΒ-casein promoterGene integrationHemagglutinin-neuraminidaseEpithelial cell-specific expressionSpecific gene expressionCell-specific expressionMammary epithelial cellsEpithelial cellsNative genomeAnimal bioreactorsMammary glandMembrane fusionGene expressionSpecific expressionTransgene constructLuminal epithelial cellsMilk glandTargeted expressionViral membraneTransgeneFarmed animalsProtein expressionTherapeutic proteinsPromoterFusion factor
2014
Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to porcine epidemic diarrhea virus
Park J, Park E, Yu J, Rho J, Paudel S, Hyun B, Yang D, Shin H. Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to porcine epidemic diarrhea virus. Virus Research 2014, 197: 108-115. PMID: 25550073, PMCID: PMC7114392, DOI: 10.1016/j.virusres.2014.12.024.Peer-Reviewed Original ResearchConceptsSusceptible to porcine epidemic diarrhea virusPorcine epidemic diarrhea virusDiarrhea virusPorcine coronavirusPorcine APNLaboratory animal modelsPorcine aminopeptidase NPorcineAminopeptidase NCoronavirus infectionRespiratory diseaseTransgenic miceAnimal modelsCoronavirus studiesVirusPigsMiceInfectionTransgeneSusceptibility
2013
Lymphatic Vessel Function in Head and Neck Inflammation
Truman LA, A-Gonzalez N, Bentley KL, Ruddle NH. Lymphatic Vessel Function in Head and Neck Inflammation. Lymphatic Research And Biology 2013, 11: 187-192. PMID: 24044758, PMCID: PMC3780307, DOI: 10.1089/lrb.2013.0013.Peer-Reviewed Original ResearchConceptsIndividual lymphatic endothelial cellsLymphatic endothelial cellsRed fluorescent reporterEndothelial cellsLymphatic vesselsTranscription factorsRegulatory elementsFaithful expressionProx1 expressionLymphatic vessel functionSingle cellsReporter miceLymphangiogenesisTd-TomatoJackson LaboratoryCellsVivoTdTomatoExpressionProx1TransgeneReporterImmune responseVessel functionMice
2011
A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation
Fedeles SV, Tian X, Gallagher AR, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM, Somlo S. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nature Genetics 2011, 43: 639-647. PMID: 21685914, PMCID: PMC3547075, DOI: 10.1038/ng.860.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBlotting, WesternCell ProliferationCystsFemaleGlucosidasesImmunoenzyme TechniquesImmunoprecipitationIntracellular Signaling Peptides and ProteinsLiver DiseasesMaleMiceMice, Inbred C57BLMice, TransgenicMutationPolycystic Kidney DiseasesReceptors, Cell SurfaceTRPP Cation Channels
2010
Utility of Telomerase-pot1 Fusion Protein in Vascular Tissue Engineering
Petersen TH, Hitchcock T, Muto A, Calle EA, Zhao L, Gong Z, Gui L, Dardik A, Bowles DE, Counter CM, Niklason LE. Utility of Telomerase-pot1 Fusion Protein in Vascular Tissue Engineering. Cell Transplantation 2010, 19: 79-87. PMID: 19878625, PMCID: PMC2850951, DOI: 10.3727/096368909x478650.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAdultAnimalsBioreactorsBlood VesselsCell Culture TechniquesCells, CulturedCellular SenescenceCollagenGenetic VectorsGraft SurvivalHumansMaleMuscle, Smooth, VascularRatsRats, NudeRecombinant Fusion ProteinsShelterin ComplexTelomeraseTelomere-Binding ProteinsTissue EngineeringTransfectionConceptsTransient deliveryVascular tissue engineeringRegenerative medicineTissue engineeringRegenerative medicine applicationsTissue-engineered constructsLentiviral vectorsMedicine applicationsImportant stumbling blockTelomeric repeat amplification protocolElderly human donorsBetter performanceAmplification protocolEngineeringDeliveryTransient reconstitutionDifferentiated cellsAdenoviral deliveryRepeat amplification protocolFusion proteinTransgeneHuman smooth muscle cellsStumbling blockGreater collagen contentProtocol
2005
Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences
Robert VJ, Sijen T, van Wolfswinkel J, Plasterk RH. Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes & Development 2005, 19: 782-787. PMID: 15774721, PMCID: PMC1074315, DOI: 10.1101/gad.332305.Peer-Reviewed Original ResearchConceptsRepetitive sequencesRepetitive transgenesCaenorhabditis elegans germlineC. elegans germlineProtection of genomeRNA interference screenChromatin factorsRNAi factorsTranscriptional geneChromatin remodelingEndogenous genesInterference screenMolecular dataCatalog genesSelective silencingPutative roleGenesRNAiGermlineSequenceTransgeneTrans effectCosuppressionChromatinGenome
2004
Partial reconstitution of V(D)J rearrangement and lymphocyte development in RAG-deficient mice expressing inducible, tetracycline-regulated RAG transgenes
Shockett PE, Zhou S, Hong X, Schatz DG. Partial reconstitution of V(D)J rearrangement and lymphocyte development in RAG-deficient mice expressing inducible, tetracycline-regulated RAG transgenes. Molecular Immunology 2004, 40: 813-829. PMID: 14687938, DOI: 10.1016/j.molimm.2003.09.009.Peer-Reviewed Original ResearchConceptsPeripheral lymphoid organsIGK locusInducible gene expressionLymph nodesCell reconstitutionLymphoid organsTransgenic miceTRB locusTRD locusT-cell reconstitutionB-cell reconstitutionMammalian cellsRAG-deficient miceSignal endsTra locusRecombination signalsInducible activationGene expressionTCR beta chainFunctional expressionLymphocyte developmentLociRAG2 mRNALymphocyte reconstitutionTransgene
2003
cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2
Jhala U, Canettieri G, Screaton R, Kulkarni R, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes & Development 2003, 17: 1575-1580. PMID: 12842910, PMCID: PMC196130, DOI: 10.1101/gad.1097103.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell LineCell SurvivalColforsinCyclic AMPCyclic AMP Response Element-Binding ProteinDiabetes MellitusGene Expression RegulationGlucagonGlucagon-Like Peptide 1GlucoseGlucose IntoleranceHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansMiceMice, TransgenicPeptide FragmentsPhosphoproteinsPhosphorylationPromoter Regions, GeneticProtein PrecursorsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionTransfectionTransgenesTumor Cells, CulturedConceptsPancreatic β-cell survivalActivity of CREBSecond messenger cAMPSurvival kinase AktΒ-cell survivalKinase AktPathway componentsA-CREBCREB actionExpression of IRS2Cell survivalBeta-cell apoptosisDirect targetIslet cell survivalNovel mechanismCREBIRS2ExpressionCAMPInductionTransgeneAktIGF-1ApoptosisSurvival
2002
Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling
Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Seminars In Cell And Developmental Biology 2002, 13: 121-128. PMID: 12127145, DOI: 10.1016/s1084-9521(02)00018-6.Peer-Reviewed Original ResearchConceptsTetracycline-controlled transcriptional silencerTranscriptional activatorTetracycline-controlled transcriptional activatorTetracycline-controlled transcriptional activation systemCultured cellsTranscriptional activation systemTarget gene expressionVariety of genesReverse tetracycline-controlled transcriptional activatorTranscriptional silencerMammalian systemsPresence of doxycyclineTarget genesNumerous transgenesGene expressionWhole organismTarget transgeneResponsive elementBackground expressionTemporal controlRegulatable systemGenesTransgene expressionRegulatorTransgene
1999
Distinct effects of Jak3 signaling on alphabeta and gammadelta thymocyte development.
Eynon E, Livák F, Kuida K, Schatz D, Flavell R. Distinct effects of Jak3 signaling on alphabeta and gammadelta thymocyte development. The Journal Of Immunology 1999, 162: 1448-59. PMID: 9973401, DOI: 10.4049/jimmunol.162.3.1448.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell DivisionCell SurvivalGene ExpressionGene Rearrangement, delta-Chain T-Cell Antigen ReceptorGene Rearrangement, gamma-Chain T-Cell Antigen ReceptorGenes, bcl-2Janus Kinase 3MiceMice, Inbred C57BLMice, KnockoutMice, TransgenicProtein-Tyrosine KinasesReceptors, Antigen, T-Cell, alpha-betaReceptors, Antigen, T-Cell, gamma-deltaSignal TransductionT-Lymphocyte SubsetsConceptsJak3-/- miceGammadelta T cell lineagesThymocyte developmentTransduction of signalsTCRbeta chain gene rearrangementLineage differentiationGammadelta lineageCell lineagesGene resultsKinase 3Developmental blockadeEarly thymocyte differentiationCytokine receptorsGamma locusT-cell lineageTargeted deletionBcl-2 expressionThymocyte differentiationTCRbeta transgeneIL-2 familyLineagesDifferentiationImmature thymocytesTransgeneSevere reduction
1998
Transgenic Animals with Inducible, Targeted Gene Expression in Brain
Chen J, Kelz M, Zeng G, Sakai N, Steffen C, Shockett P, Picciotto M, Duman R, Nestler E. Transgenic Animals with Inducible, Targeted Gene Expression in Brain. Molecular Pharmacology 1998, 54: 495-503. PMID: 9730908, DOI: 10.1124/mol.54.3.495.Peer-Reviewed Original Research
1996
Conserved regulatory element involved in the early onset of Hoxb6 gene expression
Becker D, Jiang Z, Knödler P, Deinard A, Eid R, Kidd K, Shashikant C, Ruddle F, Schughart K. Conserved regulatory element involved in the early onset of Hoxb6 gene expression. Developmental Dynamics 1996, 205: 73-81. PMID: 8770553, DOI: 10.1002/(sici)1097-0177(199601)205:1<73::aid-aja7>3.0.co;2-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceConserved SequenceDNADNA PrimersEmbryonic and Fetal DevelopmentEnhancer Elements, GeneticGene Expression Regulation, DevelopmentalGenes, HomeoboxGenes, RegulatorGenes, ReporterHomeodomain ProteinsHumansIn Situ HybridizationMesodermMiceMice, TransgenicMolecular Sequence DataSequence Homology, Nucleic AcidConceptsGene expressionPosterior lateral plate mesodermConserved regulatory elementsLateral plate mesodermReporter gene analysisSimilar enhancer activityHuman DNA sequencesBp DNA fragmentMammalian embryosMouse developmentPlate mesodermRegulatory elementsDNA sequencesEnhancer activityExpression patternsDNA fragmentsGene analysisEnhancerTransgenic miceExpressionInitial activationEarly stagesMesodermEmbryosTransgene
1988
Allelic exclusion in transgenic mice carrying mutant human IgM genes.
Nussenzweig MC, Shaw AC, Sinn E, Campos-Torres J, Leder P. Allelic exclusion in transgenic mice carrying mutant human IgM genes. Journal Of Experimental Medicine 1988, 167: 1969-1974. PMID: 3133444, PMCID: PMC2189689, DOI: 10.1084/jem.167.6.1969.Peer-Reviewed Original ResearchConceptsAllelic exclusionHeavy chain geneChain geneMu chainsHuman mu chainsPrimary B cellsHybrid animalsIg heavy chain genesHuman heavy chainsMu expressionTransgenic mice resultsIgM geneGenesSimultaneous expressionSecreted versionTransgeneIg transgenesHeavy chainMice resultsTransgenic miceExpressionHuman Ig transgenesB cellsCellsVivo
1987
Allelic Exclusion in Transgenic Mice That Express the Membrane form of Immunoglobulin μ
Nussenzweig M, Shaw A, Sinn E, Danner D, Holmes K, Morse H, Leder P. Allelic Exclusion in Transgenic Mice That Express the Membrane form of Immunoglobulin μ. Science 1987, 236: 816-819. PMID: 3107126, DOI: 10.1126/science.3107126.Peer-Reviewed Original ResearchConceptsMembrane-bound formAllelic exclusionMembrane-bound proteinsMu chainsMu chain geneHeavy chainHeavy chain allelesHuman genesTransgenic miceImmunoglobulin μMessenger RNAMembrane formChain geneAntibody genesB cellsGenesImmunoglobulin M heavy chainHuman mu chainsMouse systemCellsRegulationMolecular formsRNATransgeneProtein
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply