2024
Applications, challenges, and prospects of induced pluripotent stem cells for vascular disease
Biswas P, Park J. Applications, challenges, and prospects of induced pluripotent stem cells for vascular disease. Molecules And Cells 2024, 47: 100077. PMID: 38825189, PMCID: PMC11260847, DOI: 10.1016/j.mocell.2024.100077.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsPluripotent stem cellsVascular diseaseStem cellsTissue-engineered blood vesselsDevelopment of human induced pluripotent stem cellsInduced pluripotent stem cellsField of regenerative medicinePeripheral arterial diseaseDisease modelsVascular organoidsArtery diseaseShear stressGlobal health issueHeart diseaseVascular cellsHuman pathophysiologyClinical applicationVascular physiologyBlood vesselsRegenerative medicineDiseaseCyclic stretchDrugOrganoids
2014
Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling
Baeyens N, Mulligan-Kehoe MJ, Corti F, Simon DD, Ross TD, Rhodes JM, Wang TZ, Mejean CO, Simons M, Humphrey J, Schwartz MA. Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 17308-17313. PMID: 25404299, PMCID: PMC4260558, DOI: 10.1073/pnas.1413725111.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisBlotting, WesternCells, CulturedEndothelial CellsFemaleHuman Umbilical Vein Endothelial CellsHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMaleMice, Inbred C57BLMice, KnockoutMicroscopy, ConfocalNF-kappa BReverse Transcriptase Polymerase Chain ReactionRNA InterferenceSignal TransductionStress, MechanicalSyndecan-4Vascular Endothelial Growth Factor Receptor-2ConceptsHuman umbilical vein endothelial cellsNF-κBProinflammatory NF-κBAtherosclerotic plaque burdenKruppel-like factor 2Umbilical vein endothelial cellsVEGF receptor 2Appearance of plaquesVein endothelial cellsHypercholesterolemic micePlaque burdenAntiinflammatory pathwayThoracic aortaReceptor 2Endothelial cellsEndothelial alignmentFlow correlatesCausal roleAtherosclerosisFactor 2MiceCyclic stretchLocalization correlatesActivationSyndecan-4
2010
Induction of Nogo‐A in Cardiomyopathy
Martin J, Kartje W, Goldspink P, Akar J, Paul C, Sarkey J. Induction of Nogo‐A in Cardiomyopathy. The FASEB Journal 2010, 24: lb563-lb563. DOI: 10.1096/fasebj.24.1_supplement.lb563.Peer-Reviewed Original ResearchHuman cardiac fibroblastsHuman heart samplesAxonal sproutingAgonist treatmentNeuronal plasticityFold increaseCardiac fibroblastsNogo proteinHeart samplesMechanical stretchRT-PCRTissue distributionReticulon protein familyNogoCardiomyocyte experimentsHeart extractsCyclic stretchWestern analysisHeartIsoforms ANonfailingCardiomyopathy
2008
The Effect of Different Frequencies of Stretch on Human Dermal Keratinocyte Proliferation and Survival
Nishimura K, Blume P, Ohgi S, Sumpio BE. The Effect of Different Frequencies of Stretch on Human Dermal Keratinocyte Proliferation and Survival. Journal Of Surgical Research 2008, 155: 125-131. PMID: 19059608, DOI: 10.1016/j.jss.2008.07.029.Peer-Reviewed Original ResearchConceptsERK 1/2P38 MAPKProtein kinaseKeratinocyte proliferation rateCell deathAkt inhibitorCyclic stretchDNA synthesisAktTransferase-mediated dUTP nick-end labeling stainingRepetitive stretchApoptosisMAPKDUTP nick end labeling stainingProliferation rateHuman dermalCell numberNick end labeling stainingTUNEL-positive cellsDermal keratinocytesStretchTerminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) stainingBrdU stainingKeratinocyte proliferationProliferation
2001
Cyclic Stretch Induces the Expression of Vascular Endothelial Growth Factor in Vascular Smooth Muscle Cells
Smith JD, Davies N, Willis AI, Sumpio BE, Zilla P. Cyclic Stretch Induces the Expression of Vascular Endothelial Growth Factor in Vascular Smooth Muscle Cells. Endothelium 2001, 8: 41-48. PMID: 11409850, DOI: 10.3109/10623320109063156.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAorta, ThoracicCattleCells, CulturedCoculture TechniquesCulture MediaEndothelial Growth FactorsEndothelium, VascularGene Expression RegulationLymphokinesMuscle, Smooth, VascularPhosphorylationReceptor Protein-Tyrosine KinasesReceptors, Growth FactorReceptors, Vascular Endothelial Growth FactorStress, MechanicalVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsVasodilationConceptsVascular smooth muscle cellsVascular endothelial growth factorSmooth muscle cellsEndothelial growth factorExposure of VSMCsMuscle cellsGrowth factorMigration of ECsBovine vascular smooth muscle cellsSteady-state levelsCyclic stretchNormal endothelial cell functionEndothelial cell functionVEGF receptor KDRRelease of VEGFVEGF receptor phosphorylationVEGF secretionMRNA steady-state levelsVEGF receptorsReceptor KDRVEGF mRNACell functionReceptor phosphorylationSignificant increaseEC survival
1992
Protein kinase C is a mediator of the adaptation of vascular endothelial cells to cyclic strain in vitro.
Rosales OR, Sumpio BE. Protein kinase C is a mediator of the adaptation of vascular endothelial cells to cyclic strain in vitro. Surgery 1992, 112: 459-66. PMID: 1379381.Peer-Reviewed Original ResearchConceptsProtein kinase CActivation of PKCImmunocytochemical stainingPKC activityCyclic stretchEndothelial cell activationVascular endothelial cellsCycles/minSustained elevationCell activationFlexible-bottomed culture platesKinase CBovine aortic ECsECS resultsEndothelial cellsBlood vesselsAortic ECsEvidence of translocationSpecific PKC inhibitorEC proliferationCalphostin CEC growthHemodynamic forces
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply