2019
MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation
Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE, Cheng J, Min L, Zhong M, Carroll C, Gallagher PG, Lu J, Schwartz M, King MC, Krause DS, Guo S. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications 2019, 10: 1695. PMID: 30979898, PMCID: PMC6461646, DOI: 10.1038/s41467-019-09636-6.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingChromatin accessibilityActin cytoskeletonSomatic cell reprogrammingPluripotency transcription factorsGlobal chromatin accessibilityGenomic accessibilityCytoskeleton (LINC) complexCell reprogrammingCytoskeletal genesTranscription factorsReprogrammingPluripotencyChromatinCytoskeletonMKL1Unappreciated aspectPathwayNuclear volumeNucleoskeletonSUN2CellsActivationGenesExpression
2018
MRTFA augments megakaryocyte maturation by enhancing the SRF regulatory axis
Rahman NT, Schulz VP, Wang L, Gallagher PG, Denisenko O, Gualdrini F, Esnault C, Krause DS. MRTFA augments megakaryocyte maturation by enhancing the SRF regulatory axis. Blood Advances 2018, 2: 2691-2703. PMID: 30337297, PMCID: PMC6199649, DOI: 10.1182/bloodadvances.2018019448.Peer-Reviewed Original ResearchConceptsSerum response factorHEL cellsTarget genesBinding of SRFMegakaryocyte maturationActivity of SRFSRF target genesUpregulated target genesMyocardin family proteinsTernary complex factor familyTransformation-specific proteinsPrimary hematopoietic cellsHuman erythroleukemia cell lineErythroleukemia cell lineCArG sitesPrimary human CD34Genomic sitesGenomic regionsChromatin immunoprecipitationETS factorsTranscription factorsHuman megakaryopoiesisGenomic associationsMRTFAFactor family
2013
Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia
Kim Y, Schulz VP, Satake N, Gruber TA, Teixeira AM, Halene S, Gallagher PG, Krause DS. Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia. Leukemia 2013, 28: 945-948. PMID: 24157583, PMCID: PMC3981934, DOI: 10.1038/leu.2013.314.Peer-Reviewed Original Research
2012
MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation
Smith EC, Thon JN, Devine MT, Lin S, Schulz VP, Guo Y, Massaro SA, Halene S, Gallagher P, Italiano JE, Krause DS. MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation. Blood 2012, 120: 2317-2329. PMID: 22806889, PMCID: PMC3447785, DOI: 10.1182/blood-2012-04-420828.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateAnimalsBleeding TimeBlood PlateletsBone Marrow CellsCells, CulturedCrosses, GeneticCytoplasmCytoskeletonGene Expression ProfilingHematopoiesisMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisPlatelet ActivationThrombocytopeniaTrans-ActivatorsTranscription FactorsConceptsMegakaryocyte maturationPlatelet formationSerum response factorSerum response factor expressionMembrane organizationGene expressionMKL1MKL2Response factorDKO miceKO backgroundMegakaryocyte compartmentMegakaryocytesCritical roleMegakaryocyte ploidyExpressionMaturationKnockout miceFactor expressionCrucial roleHomologuesGenesMiceProlonged bleeding timeRole
2011
Bi‐allelic deletions within 13q14 and transient trisomy 21 with absence of GATA1s in pediatric acute megakaryoblastic leukemia
Massaro SA, Bajaj R, Pashankar FD, Ornstein D, Gallagher PG, Krause DS, Li P. Bi‐allelic deletions within 13q14 and transient trisomy 21 with absence of GATA1s in pediatric acute megakaryoblastic leukemia. Pediatric Blood & Cancer 2011, 57: 516-519. PMID: 21538823, PMCID: PMC4517576, DOI: 10.1002/pbc.23156.Peer-Reviewed Original Research
2004
Sequences Downstream of the Erythroid Promoter Are Required for High Level Expression of the Human α-Spectrin Gene*
Wong EY, Lin J, Forget BG, Bodine DM, Gallagher PG. Sequences Downstream of the Erythroid Promoter Are Required for High Level Expression of the Human α-Spectrin Gene*. Journal Of Biological Chemistry 2004, 279: 55024-55033. PMID: 15456760, DOI: 10.1074/jbc.m408886200.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCell DifferentiationCell MembraneCell NucleusChromatin ImmunoprecipitationCREB-Binding ProteinDeoxyribonuclease IDNADNA PrimersDNA, ComplementaryDNA-Binding ProteinsErythrocytesErythroid-Specific DNA-Binding FactorsEthidiumExonsGATA1 Transcription FactorGenes, ReporterHeLa CellsHumansImmunoprecipitationIntronsK562 CellsLuciferasesModels, GeneticMolecular Sequence DataMutationNuclear ProteinsPlasmidsPromoter Regions, GeneticSpectrinTemperatureTrans-ActivatorsTranscription FactorsTransfectionConceptsErythroid-specific expressionAlpha-spectrin geneGATA-1 sitesCore promoterDNase I hypersensitive sitesElectrophoretic mobility shift assaysChromatin immunoprecipitation assaysMobility shift assaysΑ-spectrin geneThymidine kinase promoterPositive regulatory elementHigh-level expressionGenomic orientationErythroid promoterGATA-1Membrane proteinsHypersensitive sitesImmunoprecipitation assaysRegulatory elementsSequence downstreamShift assaysErythroid differentiationTransfection assaysEnhancer activityReporter gene