2024
Dexamethasone Targets E2F4 to Induce Erythroid Progenitor Renewal
Papoin J, Schulz V, Khan F, Barnes B, Lipton J, Steiner L, Narla M, Gallagher P, Blanc L. Dexamethasone Targets E2F4 to Induce Erythroid Progenitor Renewal. Blood 2024, 144: 1076. DOI: 10.1182/blood-2024-211687.Peer-Reviewed Original ResearchDiamond-Blackfan anemiaCD34+ cellsErythroid progenitorsSteroid responsivenessExpression of E2F4Peripheral bloodBone marrowE2F4 expressionDex treatmentCultured CD34+ cellsInherited bone marrow failure syndromeMechanisms of steroid responseSide effectsBone marrow failure syndromesDiamond-Blackfan anemia patientsBone marrow erythroid progenitorsIncreased expressionMechanisms of corticosteroid actionAssociated with side effectsIncreased risk of infectionMarrow failure syndromesResponse to steroidsGene promoterSerum-free culture systemMarrow erythroid progenitors
2023
Phenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways
Papoin J, Yan H, Leduc M, Le Gall M, Narla A, Palis J, Steiner L, Gallagher P, Hillyer C, Gautier E, Mohandas N, Blanc L. Phenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways. American Journal Of Hematology 2023, 99: 99-112. PMID: 37929634, PMCID: PMC10877306, DOI: 10.1002/ajh.27145.Peer-Reviewed Original ResearchConceptsErythroid progenitor differentiationCell cycleErythroid progenitorsProgenitor differentiationMass spectrometry-based proteomicsFurther functional analysisSpectrometry-based proteomicsHuman erythroid progenitorsProtein machineryErythroid progenitor proliferationTerminal erythropoiesisProteomic characterizationHematopoietic stem cellsProteomic dataProgenitor populationsHuman erythropoiesisReticulocyte maturationFunctional analysisErythroid lineageOxidative phosphorylationProgenitor proliferationErythroid disordersMetabolic pathwaysAbsolute expressionStem cellsPhenotypic and Proteomic Characterization of the Human Erythroid Progenitor Continuum Reveal Dynamic Changes in Cell Cycle and in Metabolic Pathways
Papoin J, Yan H, Leduc M, le-Gall M, Narla A, Steiner L, Gallagher P, Hillyer C, Gauthier E, Narla M, Blanc L. Phenotypic and Proteomic Characterization of the Human Erythroid Progenitor Continuum Reveal Dynamic Changes in Cell Cycle and in Metabolic Pathways. Blood 2023, 142: 2455. DOI: 10.1182/blood-2023-189566.Peer-Reviewed Original ResearchCell cycleFaster cycling cellsProgenitor differentiationProgenitor populationsOxidative phosphorylationMass spectrometry-based proteomicsErythroid progenitorsS phaseProtein copy numbersSpectrometry-based proteomicsErythroid progenitor differentiationCycle-related genesG2/MTerminal erythropoiesisProgenitor biologyProteomic characterizationHematopoietic stem cellsE2F membersHuman erythropoiesisHuman bone marrowFunctional analysisErythroid lineageMurine erythropoiesisMetabolic pathwaysS transitionErythroid Progenitor Cells in the Murine Bone Marrow: Parallels with Human Counterparts and Response to Acute Anemia
McGrath K, Kingsley P, Rust E, Schulz V, Koniski A, Schofield T, Vit L, Narla M, Blanc L, Steiner L, Gallagher P, Palis J. Erythroid Progenitor Cells in the Murine Bone Marrow: Parallels with Human Counterparts and Response to Acute Anemia. Blood 2023, 142: 2451. DOI: 10.1182/blood-2023-187741.Peer-Reviewed Original ResearchGene Ontology termsErythroid progenitor cellsErythroid progenitorsOntology termsTranscription factorsProgenitor cellsMurine erythroid progenitor cellsEPO-responsive genesMurine counterpartGlobal transcriptomic studiesLineage-specific progenitor cellsHuman erythroid progenitor cellsAnalysis of genesCholesterol homeostasisHuman counterpartLate-stage erythroid progenitorsMature red blood cellsUpregulated transcription factorsMurine erythroid progenitorsRNA-seq studiesCholesterol biosynthesis genesColony-forming progenitorsBiosynthesis genesErythroid progenitor populationsMurine bone marrow
2021
Comprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis
Yan H, Ali A, Blanc L, Narla A, Lane JM, Gao E, Papoin J, Hale J, Hillyer CD, Taylor N, Gallagher PG, Raza A, Kinet S, Mohandas N. Comprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis. American Journal Of Hematology 2021, 96: 1064-1076. PMID: 34021930, PMCID: PMC8355124, DOI: 10.1002/ajh.26247.Peer-Reviewed Original ResearchConceptsTerminal erythroid differentiationErythroid differentiationHuman erythropoiesisErythroid cellsErythroid progenitorsPrimary bone marrow cellsPrimary erythroid cellsDisorders of erythropoiesisStage-specific defectsErythroid progenitor cellsFunctional insightsProgenitor stageProgenitor populationsHuman bone marrowBone marrowFactor responsivenessNormal erythropoiesisProgenitor cellsBone marrow cellsDiscrete populationsColony assayFlow cytometry-based techniqueDifferentiationProliferative capacityEarly population
2020
Comprehensive proteomic analysis of murine terminal erythroid differentiation
Gautier EF, Leduc M, Ladli M, Schulz VP, Lefèvre C, Boussaid I, Fontenay M, Lacombe C, Verdier F, Guillonneau F, Hillyer CD, Mohandas N, Gallagher PG, Mayeux P. Comprehensive proteomic analysis of murine terminal erythroid differentiation. Blood Advances 2020, 4: 1464-1477. PMID: 32282884, PMCID: PMC7160260, DOI: 10.1182/bloodadvances.2020001652.Peer-Reviewed Original ResearchConceptsTerminal erythroid differentiationErythroid differentiationProteomic dataMurine terminal erythroid differentiationTerminal differentiationOverall cellular contentComprehensive proteomic dataComprehensive proteomic analysisMurine erythroid cellsTerminal differentiation processMost biologic processesProteome levelComparison of murineHuman proteomeProteomic analysisTranscriptomic changesChromatin condensationProteomeErythroid cellsFundamental mechanismsRed cell disordersDifferentiation processErythroid progenitorsFriend erythroleukemiaCellular model
2017
Distinct roles for TET family proteins in regulating human erythropoiesis
Yan H, Wang Y, Qu X, Li J, Hale J, Huang Y, An C, Papoin J, Guo X, Chen L, Kang Q, Li W, Schulz VP, Gallagher PG, Hillyer CD, Mohandas N, An X. Distinct roles for TET family proteins in regulating human erythropoiesis. Blood 2017, 129: 2002-2012. PMID: 28167661, PMCID: PMC5383871, DOI: 10.1182/blood-2016-08-736587.Peer-Reviewed Original ResearchConceptsMyelodysplastic syndromeErythroid differentiationHuman erythropoiesisErythroid progenitorsHuman erythroid differentiationTET family proteinsDistinct rolesKnockdown of TET2Terminal erythroid differentiationHuman erythroid cellsTET2 gene mutationsFamily proteinsTranslocation (TET) familyTET2 knockdownKnockdown experimentsErythroid cellsBiological processesDevelopment defectsTET3TET3 expressionOrthochromatic erythroblastsImpaired differentiationHuman CD34KnockdownTET2
2016
Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction
Sanada C, Xavier-Ferrucio J, Lu YC, Min E, Zhang PX, Zou S, Kang E, Zhang M, Zerafati G, Gallagher PG, Krause DS. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 2016, 128: 923-933. PMID: 27268089, PMCID: PMC4990855, DOI: 10.1182/blood-2016-01-693705.Peer-Reviewed Original ResearchConceptsMegakaryocyte/erythroid progenitorsComparative expression analysisNovel enrichment strategyMegakaryocyte-erythroid progenitorsPurification strategySingle-cell levelShort hairpin RNAFate decisionsE lineageNovel purification strategyLineage fateLineage commitmentGranulocyte colony-stimulating factor-mobilized peripheral bloodMK lineageExpression analysisE progenitorsErythroid lineageFactor-mobilized peripheral bloodDifferential expressionES cellsErythroid progenitorsMYB knockdownHairpin RNALineagesColony-forming units
2014
Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E
Li J, Hale J, Bhagia P, Xue F, Chen L, Jaffray J, Yan H, Lane J, Gallagher PG, Mohandas N, Liu J, An X. Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 2014, 124: 3636-3645. PMID: 25339359, PMCID: PMC4256913, DOI: 10.1182/blood-2014-07-588806.Peer-Reviewed Original ResearchConceptsHuman BFUProgenitor populationsErythroid progenitorsDistinct progenitor populationsColony-forming unit-erythroid (CFU-E) cellsCFU-E cellsCFU-E coloniesCFU-E progenitorsHuman erythroid progenitorsUnit erythroid cellsColony assayErythroid cell culturesErythroid progenitor populationsTranscriptome analysisUnique transcriptomeStem cell factorCell culturesBioinformatics analysisHuman erythropoiesisFlow cytometry-based strategyMolecular characterizationBFU-E coloniesDifferentiation stagePrimary cellsCell factor
2011
Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo
Isern J, He Z, Fraser ST, Nowotschin S, Ferrer-Vaquer A, Moore R, Hadjantonakis AK, Schulz V, Tuck D, Gallagher PG, Baron MH. Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo. Blood 2011, 117: 4924-4934. PMID: 21263157, PMCID: PMC3100699, DOI: 10.1182/blood-2010-10-313676.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell LineageCytokinesDNA PrimersEpsilon-GlobinsErythroid Precursor CellsErythropoiesisFemaleGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Regulatory NetworksGlycolysisGreen Fluorescent ProteinsGrowth SubstancesMaleMiceMice, Inbred ICRMice, TransgenicOxygenPregnancyRecombinant Fusion ProteinsRNA, MessengerSignal TransductionConceptsPrimitive erythroid progenitorsMouse embryosErythroid progenitorsGlobal expression profilesEmbryonic day 7.5Critical regulatory factorKey regulatory pathwaysOnset of circulationFirst transcriptomeRemarkable proliferative capacityTranscript diversityTransgenic reporterTranscriptome analysisFirst cell typeRegulatory pathwaysHematopoietic lineagesExpression profilesRegulatory factorsCell typesDay 7.5EmbryosProgenitorsYolk sacBlood progenitorsGlycolytic profile
2009
Genome-Wide ChIP-Seq Reveals a Dramatic Shift in the EKLF Binding Profile Between Erythroid Progenitors and Erythroblasts.
Pilon A, Ajay S, Abaan H, Margulies E, Gallagher P, Bodine D. Genome-Wide ChIP-Seq Reveals a Dramatic Shift in the EKLF Binding Profile Between Erythroid Progenitors and Erythroblasts. Blood 2009, 114: 565. DOI: 10.1182/blood.v114.22.565.565.Peer-Reviewed Original ResearchTarget genesChIP-seqNearest geneSimultaneous genome-wide analysisC2H2 zinc finger transcription factorGenome-wide ChIP-seqErythroid Kruppel-like factorZinc finger transcription factorErythroid progenitorsTranscription factor occupancyBeta-globin locusGenome-wide analysisCell cycle control factorsProtein-DNA interactionsFinger transcription factorChIP-seq dataS-phase entryNon-repetitive regionsKruppel-like factorEKLF geneEKLF proteinFetal liverCell cycle S-phase entryChromatin remodelingFactor occupancy