2023
Molecular insights into the force-from-lipids gating of mechanosensitive channels
Bavi N, Cox C, Nikolaev Y, Martinac B. Molecular insights into the force-from-lipids gating of mechanosensitive channels. Current Opinion In Physiology 2023, 36: 100706. DOI: 10.1016/j.cophys.2023.100706.Peer-Reviewed Original ResearchMS channel gatingChannel gatingLipid bilayersMechanosensitive ion channelsLipid principleMechanosensitive channelsChannel proteinsPhysiological processesMolecular underpinningsMolecular insightsMembrane tensionIon channelsMolecular interactionsMechanical forcesCurrent understandingBilayer thinningNew insightsGatingBilayersBlood pressure regulationProteinRegulationInsightsCellsPressure regulation3D architecture and a bicellular mechanism of touch detection in mechanosensory corpuscle
Nikolaev Y, Ziolkowski L, Pang S, Li W, Feketa V, Xu C, Gracheva E, Bagriantsev S. 3D architecture and a bicellular mechanism of touch detection in mechanosensory corpuscle. Science Advances 2023, 9: eadi4147. PMID: 37703368, PMCID: PMC10499330, DOI: 10.1126/sciadv.adi4147.Peer-Reviewed Original ResearchHuman TRPV1 structure and inhibition by the analgesic SB-366791
Neuberger A, Oda M, Nikolaev Y, Nadezhdin K, Gracheva E, Bagriantsev S, Sobolevsky A. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nature Communications 2023, 14: 2451. PMID: 37117175, PMCID: PMC10147690, DOI: 10.1038/s41467-023-38162-9.Peer-Reviewed Original ResearchConceptsSB-366791Transient receptor potential (TRP) ion channelsPotential ion channelsPain pathwaysPain therapyPain treatmentPsychiatric disordersOpioid crisisTherapy targetTRPV1 inhibitorElectrophysiological recordingsHuman TRPV1TRP channelsTRPV1New drugsDisease conditionsVanilloid subfamilyIon channelsTreatmentInhibitorsOpioidsPainTherapyDiseaseCryo-electron microscopy structure
2021
Extracellular cap domain is an essential component of the TRPV1 gating mechanism
Nadezhdin KD, Neuberger A, Nikolaev YA, Murphy LA, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nature Communications 2021, 12: 2154. PMID: 33846324, PMCID: PMC8041747, DOI: 10.1038/s41467-021-22507-3.Peer-Reviewed Original ResearchConceptsCap domainC-terminusIon conductance pathwaysNumerous physiological processesTransient receptor potential channelsTRP channel familyCryo-EMPhysiological processesChannel familyExtracellular entranceHuman diseasesGating mechanismΒ-sheetConductance pathwayCritical determinantMolecular sensorsOpen probabilityPotential channelsIon selectivityEssential componentTRPV1 functionDomainTerminusProteinDeletion
2020
Lamellar cells in Pacinian and Meissner corpuscles are touch sensors
Nikolaev YA, Feketa VV, Anderson EO, Schneider ER, Gracheva EO, Bagriantsev SN. Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Science Advances 2020, 6: eabe6393. PMID: 33328243, PMCID: PMC7744075, DOI: 10.1126/sciadv.abe6393.Peer-Reviewed Original ResearchLamellar cellsR-type voltage-gated calcium channelsMeissner corpusclesAction potentialsChannel-dependent action potentialsPacinian corpusclesVoltage-gated calcium channelsSensory afferent neuronsNon-neuronal cellsBill skinAfferent neuronsNeuronal afferentsCalcium channelsElectrophysiological recordingsTactile stimuliCorpusclesIon channelsCellsSkinFirst evidenceTactile organsAfferentsNeuronsCNGA3 acts as a cold sensor in hypothalamic neurons
Feketa VV, Nikolaev YA, Merriman DK, Bagriantsev SN, Gracheva EO. CNGA3 acts as a cold sensor in hypothalamic neurons. ELife 2020, 9: e55370. PMID: 32270761, PMCID: PMC7182431, DOI: 10.7554/elife.55370.Peer-Reviewed Original ResearchPiezo2 Integrates Mechanical and Thermal Cues in Vertebrate Mechanoreceptors
Nikolaev Y, Zheng W, Gracheva E, Bagriantsev S. Piezo2 Integrates Mechanical and Thermal Cues in Vertebrate Mechanoreceptors. Biophysical Journal 2020, 118: 396a. DOI: 10.1016/j.bpj.2019.11.2254.Peer-Reviewed Original ResearchMammalian TRP Ion Channels are Insensitive to Membrane Stretch
Nikolaev Y, Cox C, Ridone P, Rohde P, Cordero-Morales J, Vasquez V, Laver D, Martinac B. Mammalian TRP Ion Channels are Insensitive to Membrane Stretch. Biophysical Journal 2020, 118: 22a. DOI: 10.1016/j.bpj.2019.11.299.Peer-Reviewed Original ResearchChapter Three Cell membrane mechanics and mechanosensory transduction
Martinac B, Nikolaev Y, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac A, Rohde P, Bavi O, Cox C. Chapter Three Cell membrane mechanics and mechanosensory transduction. Current Topics In Membranes 2020, 86: 83-141. PMID: 33837699, DOI: 10.1016/bs.ctm.2020.08.002.Peer-Reviewed Original ResearchConceptsCell mechanicsCell membrane mechanicsMechanosensitive ion channelsGene expressionIntracellular signalsMechanosensory transductionMolecular transducersIon channelsMechanical stimuliMembrane mechanicsCurrent knowledgeMechanical forcesMillisecond timescaleStimuli actCellsTransductionRapid progressNew toolMechanobiologyBiological cellsBetter understandingPathwayExpression
2019
Mammalian TRP ion channels are insensitive to membrane stretch
Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, Laver DR, Martinac B. Mammalian TRP ion channels are insensitive to membrane stretch. Journal Of Cell Science 2019, 132: jcs238360. PMID: 31722978, PMCID: PMC6918743, DOI: 10.1242/jcs.238360.Peer-Reviewed Original ResearchConceptsTRP channelsTouch-insensitive mutantsMembrane stretchIon channelsTRP ion channel familyIon channel familyTransient receptor potential (TRP) ion channelsTRP ion channelsMammalian subfamiliesMammalian membersPotential ion channelsArtificial bilayer systemInsensitive mutantsCytoplasmic tethersDownstream componentsMechanosensory processesSignaling cascadesChannel familyCellular componentsBlood pressure regulationCell membraneCerebrospinal fluid flowMechanical forcesStretch activationPressure regulationPiezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors
Zheng W, Nikolaev YA, Gracheva EO, Bagriantsev SN. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 17547-17555. PMID: 31413193, PMCID: PMC6717272, DOI: 10.1073/pnas.1910213116.Peer-Reviewed Original ResearchMechanosensitivity of Ion Channels
Cranfield C, Kloda A, Nikolaev Y, Martinac A, Ridone P, Bavi N, Bavi O, Petrov E, Battle A, Nomura T, Rohde P, Nakayama Y, Rosholm K, Cox C, Baker M, Martinac B. Mechanosensitivity of Ion Channels. 2019, 1-11. DOI: 10.1007/978-3-642-35943-9_376-2.Peer-Reviewed Original ResearchA Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds
Schneider ER, Anderson EO, Feketa VV, Mastrotto M, Nikolaev YA, Gracheva EO, Bagriantsev SN. A Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds. Cell Reports 2019, 26: 1979-1987.e3. PMID: 30784581, PMCID: PMC6420409, DOI: 10.1016/j.celrep.2019.01.100.Peer-Reviewed Original ResearchConceptsTrigeminal ganglionPiezo2 ion channelsExpression of moleculesExpression of factorsPiezo2 expressionSomatosensory neuronsNeuronal subtypesSomatosensory systemSuch neuronsSpecialist birdsBird speciesMolecular variationFamily AnatidaeForaging behaviorTactile specializationNeuronsMechanoreceptorsSpecies analysisGangliaGeneral roleBehavioral phenotypesIon channelsGeneral mechanismTactile specialistsFunction of mechanoreceptors
2018
Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile
Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, Rohde PR, Bavi O. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophysical Reviews 2018, 10: 1377-1384. PMID: 30182202, PMCID: PMC6233343, DOI: 10.1007/s12551-018-0450-3.Peer-Reviewed Original ResearchTransbilayer pressure profileMS channelsIon channel mechanosensitivityLipid bilayersMechanosensitive ion channelsSubmillisecond time scaleMembrane lipid environmentStructure-function relationshipsChannel mechanosensitivityMembrane proteinsDownstream effectorsLipid environmentIntracellular signalsCellular membranesConformational changesBiophysical principlesChannel reconstitutionIon channelsMechanical stimuliTime scalesPressure profileSpecific interactionsMechanical forcesCentral roleReconstitution methodMechanosensitivity of Ion Channels
Cranfield C, Kloda A, Nikolaev Y, Martinac A, Ridone P, Bavi N, Bavi O, Petrov E, Battle A, Nomura T, Rohde P, Nakayama Y, Rosholm K, Cox C, Baker M, Martinac B. Mechanosensitivity of Ion Channels. 2018, 1-11. DOI: 10.1007/978-3-642-35943-9_376-1.Peer-Reviewed Original Research
2017
Principles of Mechanosensing at the Membrane Interface
Bavi N, Nikolaev Y, Bavi O, Ridone P, Martinac A, Nakayama Y, Cox C, Martinac B. Principles of Mechanosensing at the Membrane Interface. Springer Series In Biophysics 2017, 19: 85-119. DOI: 10.1007/978-981-10-6244-5_4.Peer-Reviewed Original ResearchChannel mechanosensitivityTransbilayer pressure profileIon channel mechanosensitivitySpecific cellular responsesMechanosensitive ion channelsMolecular mechanosensorsCellular mechanotransductionIntracellular signalsPhysiological processesCellular responsesMechanosensory transducersLiving cellsExtracellular matrixIon channelsChannel conformationLipid bilayersMembrane interfaceMechanotransductionMechanosensitivityMechanical stimuliCellsCytoskeletonMechanosensorsLipidsConformationAdding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling
Friedrich O, Schneidereit D, Nikolaev Y, Nikolova-Krstevski V, Schürmann S, Wirth-Hücking A, Merten A, Fatkin D, Martinac B. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. Progress In Biophysics And Molecular Biology 2017, 130: 170-191. PMID: 28647645, DOI: 10.1016/j.pbiomolbio.2017.06.011.Peer-Reviewed Original ResearchConceptsFocal adhesion complexesCell-substrate junctionLive-cell imagingMechanosensitive ion channelsDirect mechanistic studiesAdhesion complexesCellular mechanotransductionMembrane junctionsIntracellular signalingMechanotransduction researchCellular stretchCellular modelIon channelsCellular levelCell membraneMechanotransductionIndividual cardiomyocytesBiomedical engineeringMechanical wall stressMembraneMechanistic studiesCellsStretch deviceCardiomyocytesElastomeric membrane
2016
Biophysical Factors that Promote Mechanically-Induced Action Potentials in Neocortical and Hippocampal Pyramidal Neurons
Nikolaev Y, Dosen P, Laver D, Van Helden D, Hamill O. Biophysical Factors that Promote Mechanically-Induced Action Potentials in Neocortical and Hippocampal Pyramidal Neurons. Biophysical Journal 2016, 110: 349a. DOI: 10.1016/j.bpj.2015.11.1877.Peer-Reviewed Original ResearchMechanosensitivity of TRPC6 Ion Channel Reconstituted in the Liposomes
Nikolaev Y, Rohde P, Laver D, Martinac B. Mechanosensitivity of TRPC6 Ion Channel Reconstituted in the Liposomes. Biophysical Journal 2016, 110: 610a-611a. DOI: 10.1016/j.bpj.2015.11.3260.Peer-Reviewed Original Research
2015
Lipid–protein interactions: Lessons learned from stress
Battle A, Ridone P, Bavi N, Nakayama Y, Nikolaev Y, Martinac B. Lipid–protein interactions: Lessons learned from stress. Biochimica Et Biophysica Acta 2015, 1848: 1744-1756. PMID: 25922225, DOI: 10.1016/j.bbamem.2015.04.012.Peer-Reviewed Original ResearchConceptsLipid-protein interactionsMS channelsLipid bilayersRegulation of cellMechanosensitive membrane channelsMechanosensitive proteinsMembrane proteinsCellular compartmentsTransmembrane portionProkaryotic systemIntracellular signalsPhysical barrierPhysiological processesHypoosmotic shockMembrane channelsMS proteinBiological membranesProteinVariety of rolesCell lysisNormal functionIntracellular spaceEukaryotesCardiac hypertrophyMuscular dystrophy