Featured Publications
Pathobionts from chemically disrupted gut microbiota induce insulin-dependent diabetes in mice
Yang X, Wang Z, Niu J, Zhai R, Xue X, Wu G, Fang Y, Meng G, Yuan H, Zhao L, Zhang C. Pathobionts from chemically disrupted gut microbiota induce insulin-dependent diabetes in mice. Microbiome 2023, 11: 62. PMID: 36978130, PMCID: PMC10052834, DOI: 10.1186/s40168-023-01507-z.Peer-Reviewed Original ResearchConceptsInsulin-dependent diabetesBeta-cell destructionGut microbiotaGut microbiomeDextran sulfate sodium treatmentAutoimmune type 1 diabetesCell destructionIDD developmentDysbiotic gut microbiotaGerm-free micePotential human relevanceType 1 diabetesNormal gut microbiomeGut pathobiontPancreatic inflammationC57BL/6 miceLocal inflammationNormal dietWildtype miceAnimal modelsDiabetesSodium treatmentPathobiontsPancreasHuman relevanceTlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson J, Hu Y, Zhao H, Wong F, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nature Communications 2024, 15: 4232. PMID: 38762479, PMCID: PMC11102548, DOI: 10.1038/s41467-024-48611-8.Peer-Reviewed Original ResearchConceptsToll-like receptor 9Gut microbiotaGut microbial communityTransferred to germ-free miceB cellsGerm-free miceTLR9 deficiencyKO miceGene sequencesGerminal center B cellsMicrobial communitiesMarginal zone B cellsGut dysbiosisFollicular helper cellsSelf-DNAMetabolic homeostasisAssociated with increased frequencyPro-inflammatory stateFat tissue inflammationGutHigh-fat dietMicrobiotaHelper cellsT cellsControl miceBile acid-gut microbiota imbalance in cholestasis and its long-term effect in mice
Yang X, Xu Y, Li J, Ran X, Gu Z, Song L, Zhang L, Wen L, Ji G, Wang R. Bile acid-gut microbiota imbalance in cholestasis and its long-term effect in mice. MSystems 2024, 9: e00127-24. PMID: 38934542, PMCID: PMC11265269, DOI: 10.1128/msystems.00127-24.Peer-Reviewed Original ResearchGut microbiotaGut microbiota dysbiosisDysregulated gut microbiotaGut microbiota transplantationGerm-free miceVirulence factorsSmall intestinal bacteriaBile acid homeostasisMicrobiota dysbiosisDecreased diversityMicrobiota imbalanceMicrobiotaMouse model of cholestasisBile acidsMouse modelIntestinal bacteriaAcid homeostasisMicrobiota transplantationClinical management of patientsGutHepatic bile acidsLong-term effectsPre-clinical findingsModel of cholestasisManagement of patientsGut microbiota from B-cell-specific TLR9-deficient NOD mice promote IL-10+ Breg cells and protect against T1D
Yang X, Huang J, Peng J, Wang P, Wong F, Wang R, Wang D, Wen L. Gut microbiota from B-cell-specific TLR9-deficient NOD mice promote IL-10+ Breg cells and protect against T1D. Frontiers In Immunology 2024, 15: 1413177. PMID: 38903498, PMCID: PMC11187306, DOI: 10.3389/fimmu.2024.1413177.Peer-Reviewed Original ResearchGut microbiotaGerm-free miceToll-like receptor 9Increased gut permeabilityIntestinal microbiotaGut permeabilityT1D developmentGut microbiota compositionFecal samplesTransferred to germ-free miceGut barrier integrityBreg cell differentiationMicrobiota influenceMucin degradationMicrobiota compositionBreg cellsAltered microbiotaMicrobiota impactMicrobiotaGene expressionImmune regulationDevelopment of T1DCell differentiationGutNOD mice
2024
Dietary modulation of gut microbiota affects susceptibility to drug-induced liver injury
Pan H, Song D, Wang Z, Yang X, Luo P, Li W, Li Y, Gong M, Zhang C. Dietary modulation of gut microbiota affects susceptibility to drug-induced liver injury. Gut Microbes 2024, 16: 2439534. PMID: 39673542, PMCID: PMC11649229, DOI: 10.1080/19490976.2024.2439534.Peer-Reviewed Original ResearchConceptsGut microbiotaDrug-induced liver injuryIndole-3-lactic acidComposition of human gut microbiotaWestern style dietDietary modulators of gut microbiotaModulation of gut microbiotaHuman gut microbiotaGut microbiota transplantationModulating gut microbiotaSusceptibility to drug-induced liver injuryIncidence of drug-induced liver injuryDietary fiber interventionLiver injuryDiet-induced variationsBile acid metabolismMicrobiotaTranslocation of lipopolysaccharideImprove liver functionSignaling pathwayDietary shiftsMicrobiota transplantationFiber interventionAcid metabolismIntestinal barrierThe profile of blood microbiome in new-onset type 1 diabetes children
Yuan X, Yang X, Xu Z, Li J, Sun C, Chen R, Wei H, Chen L, Du H, Li G, Yang Y, Chen X, Cui L, Fu J, Wu J, Chen Z, Fang X, Su Z, Zhang M, Wu J, Chen X, Zhou J, Luo Y, Zhang L, Wang R, Luo F. The profile of blood microbiome in new-onset type 1 diabetes children. IScience 2024, 27: 110252. PMID: 39027370, PMCID: PMC11255850, DOI: 10.1016/j.isci.2024.110252.Peer-Reviewed Original ResearchBlood microbiomeRRNA gene sequencesMicrobiome of patientsGene sequencesOral microbiomePICRUSt analysisMicrobial featuresMicrobiome signaturesPathogenic bacteriaMicrobiomeTranslocation of bacteriaPotential translocationBacteriaRandom forest analysisType 1 diabetic childrenGutNew-onset T1DDiscriminatory powerType 1 diabetesForest analysisOral cavityIncreasing diversityInduce inflammationPICRUStGenus
2023
Microbiota-derived acetate enhances host antiviral response via NLRP3
Niu J, Cui M, Yang X, Li J, Yao Y, Guo Q, Lu A, Qi X, Zhou D, Zhang C, Zhao L, Meng G. Microbiota-derived acetate enhances host antiviral response via NLRP3. Nature Communications 2023, 14: 642. PMID: 36746963, PMCID: PMC9901394, DOI: 10.1038/s41467-023-36323-4.Peer-Reviewed Original ResearchConceptsViral infectionGut-lung axisRespiratory viral infectionsNLRP3-deficient miceIFN-I productionHost immune responsePathogenic viral infectionPotential therapeutic targetType I interferonHost antiviral responseRespiratory virusesIAV infectionMAVS aggregationNLRP3 inflammasomeDeficient miceImmune responseProtective effectTherapeutic targetI interferonGut microbiotaAntiviral responseNLRP3Host defenseInfectionEnhanced induction
2022
A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease
Cheng R, Wang L, Le S, Yang Y, Zhao C, Zhang X, Yang X, Xu T, Xu L, Wiklund P, Ge J, Lu D, Zhang C, Chen L, Cheng S. A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease. Nature Communications 2022, 13: 2555. PMID: 35538056, PMCID: PMC9091228, DOI: 10.1038/s41467-022-29968-0.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseFatty liver diseaseDiet interventionPrimary outcomeLiver diseaseTreatment of NAFLDThird primary outcomeTRIAL REGISTRATION NUMBERLiver fat contentCombined aerobic exerciseEffects of interventionsLiver fatAerobic exerciseGlucose metabolismGut microbiotaRegistration numberLarger sample sizeMicrobiota compositionExploratory adPatientsAdverse effectsInterventionIntervention strategiesPrediabetesExerciseGut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis Strains
Li S, Li N, Wang C, Zhao Y, Cao J, Li X, Zhang Z, Li Y, Yang X, Wang X, Che C, Zhao Y, Wang L, Zhao L, Shen J. Gut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis Strains. Frontiers In Nutrition 2022, 9: 798403. PMID: 35273986, PMCID: PMC8901577, DOI: 10.3389/fnut.2022.798403.Peer-Reviewed Original ResearchImmune-modulatory propertiesHuman breast milkGut microbiotaBreast milkModulatory propertiesAnti-inflammatory Treg cellsHuman peripheral blood mononuclear cellsPeripheral blood mononuclear cellsIleal mRNA expressionBlood mononuclear cellsT helper cellsAnti-inflammatory potentialPostnatal week 3Postnatal day 1Microbiota α-diversityImmune response genesTreg cellsBreast feedingHelper cellsMononuclear cellsIleal expressionSuckling miceGut immunityWeaning miceInfant gutChronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice
Zhang Y, Luo H, Niu Y, Yang X, Li Z, Wang K, Bi H, Pang X. Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Medicine 2022, 91: 84-92. PMID: 35286865, DOI: 10.1016/j.sleep.2022.02.003.Peer-Reviewed Original ResearchConceptsObstructive sleep apneaCo-abundance groupsChronic intermittent hypoxiaIntermittent hypoxiaSystemic inflammationGut microbiotaGut microbiomeElevated systemic inflammationAdverse metabolic outcomesGut microbial dysbiosisMale C57BL/6 micePrevalent sleep disorderFatty acid metabolismIH miceIH exposureMetabolic riskSleep apneaC57BL/6 miceMicrobial dysbiosisComposition of microbiotaMetabolic outcomesIntestinal microbial communityMetabolism disordersMetabolic dysfunctionSleep disorders
2021
Ketogenic Diets Induced Glucose Intolerance and Lipid Accumulation in Mice with Alterations in Gut Microbiota and Metabolites
Li Y, Yang X, Zhang J, Jiang T, Zhang Z, Wang Z, Gong M, Zhao L, Zhang C. Ketogenic Diets Induced Glucose Intolerance and Lipid Accumulation in Mice with Alterations in Gut Microbiota and Metabolites. MBio 2021, 12: 10.1128/mbio.03601-20. PMID: 33785628, PMCID: PMC8092315, DOI: 10.1128/mbio.03601-20.Peer-Reviewed Original ResearchConceptsKetogenic dietGut microbiotaProportion of fatLipid metabolismGlucose intoleranceInsulin resistanceFat accumulationMouse trialsNeurodegenerative diseasesLipid accumulationMore fat accumulationInduced glucose intoleranceLipid metabolism disordersAffected lipid metabolismMetabolism disordersMetabolic disordersGlucose homeostasisGlucose metabolismSource of fatHuman studiesHigh fatTreatment of diseasesMiceBeneficial effectsWeight lossThe effect of calorie intake, fasting, and dietary composition on metabolic health and gut microbiota in mice
Zhang Z, Chen X, Loh Y, Yang X, Zhang C. The effect of calorie intake, fasting, and dietary composition on metabolic health and gut microbiota in mice. BMC Biology 2021, 19: 51. PMID: 33740961, PMCID: PMC7977615, DOI: 10.1186/s12915-021-00987-5.Peer-Reviewed Original ResearchConceptsHigh-fat dietAd libitum groupMetabolic healthGut microbiotaIntermittent fastingNormal chow miceTotal energy intakeGut microbiota modulationDietary structureIF regimenMetabolic ameliorationNormal chowCR regimenMicrobiota modulationFood intakeDietary regimensCalorie intakeCR groupCR miceRegimenControl groupEnergy intakeGut microbial communityLipid metabolismFasting-refeeding cycle
2020
Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice
Ghosh S, Yang X, Wang L, Zhang C, Zhao L. Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Computational And Structural Biotechnology Journal 2020, 19: 448-458. PMID: 33510856, PMCID: PMC7806547, DOI: 10.1016/j.csbj.2020.12.011.Peer-Reviewed Original ResearchNon-alcoholic fatty liver diseaseSerum cholesterolGut microbiotaPrebiotic feedingLiver steatosisHepatic steatosisHigh fat diet fed miceHigh-fat diet-fed miceAlters gut microbiotaDiet fed miceFatty liver diseaseDiet-fed miceCholesterol-lowering effectGut microbiota structureImpact of prebioticsIncreased SCFA productionPrebiotic intakeLiver diseaseFed micePrebiotic consumptionDay 7SteatosisBeneficial effectsWeight lossUnrestricted feedingGut Bacteria Shared by Children and Their Mothers Associate with Developmental Level and Social Deficits in Autism Spectrum Disorder
Chen Y, Fang H, Li C, Wu G, Xu T, Yang X, Zhao L, Ke X, Zhang C. Gut Bacteria Shared by Children and Their Mothers Associate with Developmental Level and Social Deficits in Autism Spectrum Disorder. MSphere 2020, 5: 10.1128/msphere.01044-20. PMID: 33268567, PMCID: PMC7716279, DOI: 10.1128/msphere.01044-20.Peer-Reviewed Original ResearchLactobacillus Mucosae Strain Promoted by a High-Fiber Diet in Genetic Obese Child Alleviates Lipid Metabolism and Modifies Gut Microbiota in ApoE-/- Mice on a Western Diet
Jiang T, Wu H, Yang X, Li Y, Zhang Z, Chen F, Zhao L, Zhang C. Lactobacillus Mucosae Strain Promoted by a High-Fiber Diet in Genetic Obese Child Alleviates Lipid Metabolism and Modifies Gut Microbiota in ApoE-/- Mice on a Western Diet. Microorganisms 2020, 8: 1225. PMID: 32806628, PMCID: PMC7464838, DOI: 10.3390/microorganisms8081225.Peer-Reviewed Original ResearchWestern dietHigh-fiber dietGut microbiotaApoE-/- miceModifies gut microbiotaTreatment of hyperlipidemiaSevere lipid accumulationGut microbiota structureProbiotic candidate strainSupplementation of probioticsNext-generation probioticsMetabolic endotoxemiaAortic sinusHuman-derived strainsHyperlipidemiaTherapeutic methodsLipid metabolismAtherosclerosisLipid accumulationMiceSelection of candidatesApoEMicrobiota structureDietProbiotics
2019
Timing of Calorie Restriction in Mice Impacts Host Metabolic Phenotype with Correlative Changes in Gut Microbiota
Zhang L, Xue X, Zhai R, Yang X, Li H, Zhao L, Zhang C. Timing of Calorie Restriction in Mice Impacts Host Metabolic Phenotype with Correlative Changes in Gut Microbiota. MSystems 2019, 4: 10.1128/msystems.00348-19. PMID: 31796564, PMCID: PMC6890928, DOI: 10.1128/msystems.00348-19.Peer-Reviewed Original ResearchGut microbiotaCalorie restrictionMetabolic phenotypeLate-night eatingRestricted calorie intakeSystemic inflammatory markersIntestinal barrier functionCalorie-restricted miceHost metabolic phenotypeEffects of CRRestriction of foodGut microbiota structureExtended fasting periodPhysiological changesInflammatory markersNormal chowFat accumulationFood intakeCalorie intakeCR miceGlucose metabolismMuscle lossOverall healthFasting periodMiceStrain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice
Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Frontiers In Cellular And Infection Microbiology 2019, 9: 239. PMID: 31334133, PMCID: PMC6624636, DOI: 10.3389/fcimb.2019.00239.Peer-Reviewed Original ResearchMeSH KeywordsAkkermansiaAnimalsAnti-Inflammatory AgentsCD4-Positive T-LymphocytesChronic DiseaseColitisColonCytokinesDextran SulfateDisease Models, AnimalDysbiosisFecesGastrointestinal MicrobiomeHT29 CellsHumansInterferon-gammaInterleukin-8MaleMiceMice, Inbred C57BLProbioticsRNA, Ribosomal, 16STumor Necrosis Factor-alphaVerrucomicrobiaWhole Genome SequencingConceptsInflammatory bowel diseaseAnti-inflammatory propertiesAnti-inflammatory effectsChronic colitisInflammation indexSpleen weightGut microbiotaBeneficial effectsSimilar anti-inflammatory propertiesColon histological scoresDifferentiation of TregsDextran sulfate sodiumPro-inflammatory cytokinesT cell populationsIL-8 productionColon of micePotential beneficial effectsShort-chain fatty acidsBowel diseaseIntestinal dysbiosisSulfate sodiumClinical parametersHT-29 cellsHistological scoresStrain-specific characteristics
2018
Genetically Obese Human Gut Microbiota Induces Liver Steatosis in Germ-Free Mice Fed on Normal Diet
Wang R, Li H, Yang X, Xue X, Deng L, Shen J, Zhang M, Zhao L, Zhang C. Genetically Obese Human Gut Microbiota Induces Liver Steatosis in Germ-Free Mice Fed on Normal Diet. Frontiers In Microbiology 2018, 9: 1602. PMID: 30079055, PMCID: PMC6062601, DOI: 10.3389/fmicb.2018.01602.Peer-Reviewed Original ResearchHepatic transcriptional profilePreM groupGut microbiotaLiver steatosisNon-alcoholic fatty liver diseaseDietary weight loss programObesity-associated gut microbiotaLipid metabolismPeroxisome proliferator-activated receptor alphaProliferator-activated receptor alphaDysbiotic gut microbiotaLiver macrovesicular steatosisFatty liver diseaseNormal chow dietWeight loss programC57BL/6J male miceNormal hepatic physiologyObese human donorsLiver diseaseChow dietLoss programMice fedHuman gut microbiotaMacrovesicular steatosisMetabolic deterioration
2017
Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice
Yang X, Wang Q, Pang Z, Pan M, Zhang W. Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. Pharmaceutical Biology 2017, 55: 1207-1214. PMID: 28248545, PMCID: PMC6130443, DOI: 10.1080/13880209.2016.1278454.Peer-Reviewed Original ResearchConceptsHigh-fat dietAdipose tissueC57BL/6 miceFat dietFSH treatmentBody weightMRNA expressionAdipose tissue inflammationMolecular targetsLipid metabolism disordersObese mouse modelHepatic triglyceride accumulationEffect of FSHTNFα mRNA expressionPPARα mRNA expressionRegulation of PPARγBody weight gainPPARγ protein levelsPotential molecular targetsPPARα gene expressionFSH administrationMacrophage infiltrationTissue inflammationCholesterol levelsMetabolism disorders
2015
Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes
Wang Q, Wang S, Yang X, You P, Zhang W. Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutrition Research 2015, 35: 317-327. PMID: 25724338, DOI: 10.1016/j.nutres.2014.12.009.Peer-Reviewed Original ResearchMeSH Keywords3T3-L1 CellsAdipocytesAdipogenesisAnimalsAnti-Obesity AgentsCarrier ProteinsCCAAT-Enhancer-Binding Protein-betaCCAAT-Enhancer-Binding ProteinsCell DifferentiationCell SurvivalDown-RegulationFlavonoidsLipaseLipid MetabolismLipolysisLipoprotein LipaseMiceMitogen-Activated Protein KinasesPerilipin-1PhosphoproteinsPhosphorylationPPAR gammaRNA, MessengerSignal TransductionSterol EsteraseTriglyceridesConceptsJun N-terminal kinaseExtracellular signal-regulated kinaseT3-L1 preadipocytesN-terminal kinaseSignal-regulated kinaseTranscription factorsAdipogenesis-related transcription factorsT3-L1T3-L1 adipocytesAdipogenic transcription factorsGlucose transporter 4Phosphorylation of extracellular signal-regulated kinasePhosphorylation levels of extracellular signal-regulated kinaseDifferentiation of preadipocytesAdipocyte protein 2Levels of extracellular signal-regulated kinasePerilipin APeroxisome proliferator-activated receptor gAdipocyte differentiationDose-dependent increaseTransporter 4Adipocyte lipolysisPhosphorylation levelsProtein AMYR treatment