2015
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease.
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernandez-Hernando C, Suarez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology 2015, 13: 291-304. PMID: 26156264, DOI: 10.2174/15701611113119990012.Peer-Reviewed Original ResearchConceptsPost-transcriptional levelMonocyte-derived phagocytesFoam cell formationGene regulatorsCell adhesion moleculeModulating microRNAsVascular smooth muscle cellsCell differentiationArterial tree resultsVascular diseaseCell formationMicroRNAsSmooth muscle cellsCap formationVascular cellsFibrous cap formationPotential therapeutic applicationsUnstable fibrous capUnstable coronary syndromesAtherosclerotic vascular diseaseTree resultsMuscle cellsChronic inflammatory diseaseProgression of atherosclerosisLesion-prone sites
2013
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease.
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernández-Hernando C, Suárez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology 2013 PMID: 23713860, PMCID: PMC3883893.Peer-Reviewed Original ResearchPost-transcriptional levelMonocyte-derived phagocytesFoam cell formationGene regulatorsCell adhesion moleculeModulating microRNAsVascular smooth muscle cellsCell differentiationArterial tree resultsVascular diseaseCell formationMicroRNAsSmooth muscle cellsCap formationVascular cellsFibrous cap formationPotential therapeutic applicationsUnstable fibrous capUnstable coronary syndromesAtherosclerotic vascular diseaseTree resultsMuscle cellsChronic inflammatory diseaseProgression of atherosclerosisLesion-prone sites
2011
MicroRNAs in lipid metabolism
Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Current Opinion In Lipidology 2011, 22: 86-92. PMID: 21178770, PMCID: PMC3096067, DOI: 10.1097/mol.0b013e3283428d9d.Peer-Reviewed Original ResearchConceptsFatty acid metabolismPotent post-transcriptional regulatorsLipid metabolismPost-transcriptional regulatorsCholesterol homeostasisMiR-33Multiple physiological processesAcid metabolismFatty acid degradationFatty acid β-oxidationLipid metabolism genesTiny RNAsTranscriptional regulationABC transportersMetabolism genesFatty acid oxidationHDL biogenesisPhysiological processesCell differentiationMiR-27MiRNAsΒ-oxidationMiR-335Cellular levelMiR-370
2005
Lovastatin-induced PC-12 cell differentiation is associated with RhoA/RhoA kinase pathway inactivation
Fernández-Hernando C, Suárez Y, Lasunción MA. Lovastatin-induced PC-12 cell differentiation is associated with RhoA/RhoA kinase pathway inactivation. Molecular And Cellular Neuroscience 2005, 29: 591-602. PMID: 15951198, DOI: 10.1016/j.mcn.2005.04.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCholesterolDiterpenesEnzyme ActivationEnzyme InhibitorsHydroxymethylglutaryl-CoA Reductase InhibitorsIntracellular Signaling Peptides and ProteinsLovastatinNeuritesPC12 CellsPhosphorylationProtein PrenylationProtein Serine-Threonine KinasesRatsRhoA GTP-Binding ProteinRho-Associated KinasesSterolsTerpenesConceptsNeurite outgrowthNon-sterol mevalonate derivativesPC-12 cell differentiationCellular lipid compositionNon-sterol isoprenoidsEffects of geranylgeraniolBiosynthetic pathwayProtein prenylationRole of cholesterolCofilin phosphorylationRhoA signalingMevalonate derivativesA ReductaseRhoA activationCell differentiationCoenzyme A (HMG-CoA) reductaseLovastatin inhibitsPC-12 cellsCholesterol biosynthesisPathway inactivationRhoA kinaseLipid compositionOutgrowthGeranylgeraniolInhibition